Skip to main content
Log in

Chemical attributes, bacterial community, and antibiotic resistance genes are affected by intensive use of soil in agro-ecosystems of the Atlantic Forest, Southeastern Brazil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar, L. M., Souza, M. F., Laia, M. L., Melo, J. O., Costa, M. R., Gonçalves, J. F., & Santos, J. B. (2020). Metagenomic analysis reveals mechanisms of atrazine biodegradation promoted by tree species. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115636

    Article  Google Scholar 

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxicology, 9, p. 42. https://doi.org/10.3390/toxics9030042

  • Andersen, K. S., Kirkegaard, R. H., Karst, S. M., & Albertsen, M. (2018). Ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. https://doi.org/10.1101/299537

    Article  Google Scholar 

  • Armalytė, J., Skerniškytė, J., Bakienė, E., Krasauskas, R., Šiugždinienė, R., Kareivienė, V., Kerziené, S., Klimiene, I., Suziedeliene, E., & Ružauskas, M. (2019). Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00892

    Article  Google Scholar 

  • Barbosa, D. R., García, A. C., Souza, C. D. C. B., & Sobrinho, N. M. B. A. (2021). Influence of humic acid structure on the accumulation of oxyfluorfen in tropical soils of mountain agroecosystems. Environmental Pollution. https://doi.org/10.1016/j.envpol.2021.117380

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

  • Bertol, I., Cogo, N. P., Schick, J., Gudagnin, J. C., & Amaral, A. J. (2007). Aspectos financeiros relacionados às perdas de nutrientes por erosão hídrica em diferentes sistemas de manejo do solo. Revista Brasileira De Ciências Do Solo. https://doi.org/10.1590/S0100-06832007000100014

    Article  Google Scholar 

  • Bhering, A. S., Carmo, M. G. F., Matos, T. S., Lima, E. S. A., Sobrinho, N. M. B. A. (2017). Soil factors related to the severity of Clubroot in Rio de Janeiro, Brazil. Plant Disease. https://doi.org/10.1094/PDIS-07-16-1024-SR

  • Bizuti, D. T., Robin, A., Soares, T. M., Moreno, V. S., Almeida, D. R., Andreote, F. D., Casagrande, J. C., Herrmann, L., Melis, J. V., Perim, J. E. L., Medeiros, S. D. S., Sorrini, T. B., & Brancalion, P. H. (2022). Multifunctional soil recovery during the restoration of Brazil’s Atlantic Forest after bauxite mining. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14097

    Article  Google Scholar 

  • BRASIL. Lei de Proteção da Vegetação Nativa. Lei nº 12.651, de 25 de maio de 2012. 2012. Brasília. 2012.

  • Calegari, A., Mondardo, A., Bulisani, E. A., Wildner, L. P., Costa, M. B. B., Alcântara, P. B., Miyasaka, S., Amado, T. J. C. (1993). Adubação verde no sul do Brasil. Rio de Janeiro: AS-PTA.

  • Carvalho, T. S., Jesus, E. D. C., Barlow, J., Gardner, T. A., Soares, I. C., Tiedje, J. M., & Moreira, F. M. D. S. (2016). Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology. https://doi.org/10.1002/ecy.1513

    Article  Google Scholar 

  • Cerqueira, A. E. S., Silva, T. H., Nunes, A. C. S., Nunes, D. D., Lobato, L. C., Veloso, T. G. R., Paula, S. O., Kasuya, M. C. M., & Silva, C. C. (2018). Amazon basin pasture soils reveal susceptibility to phytopathogens and lower fungal community dissimilarity than forest. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.07.004

    Article  Google Scholar 

  • Chediack, S. E., Baqueiro, M. F. (2005). Extração e conservação do palmito. In C. Galindo-Leal & I. G. Câmara (Eds.), Mata Atlântica: Biodiversidade, ameaças e perspectivas. São Paulo: Fundação SOS Mata Atlântica.

  • Chiesa, L., Nobile, M., Arioli, F., Britti, D., Trutic, N., Pavlovic, R., & Panseri, S. (2015). Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry. Food Chemistry. https://doi.org/10.1016/j.foodchem.2015.03.098

    Article  Google Scholar 

  • Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols. https://doi.org/10.1038/s41596-019-0264-1

    Article  Google Scholar 

  • D’costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature. https://doi.org/10.1038/nature10388

    Article  Google Scholar 

  • Dantas, M. E., Shinzato, E., Medina, A. I. D. M., Silva, C. R. D., Pimentel, J., Lumbreras, J. F., Calderano, S. B., Filho, A. D. C. (2015) Diagnóstico Geoambiental do Estado do Rio De Janeiro. Serviço Geológico do Brasil. Available at: http://www.cprm.gov.br/publique/media/artigo_geoambiental RJ.pdf. Accessed 04 Jul 2018.

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews. https://doi.org/10.1128/MMBR.00016-10

    Article  Google Scholar 

  • Delgado-Baquerizo, M., Hu, H. W., Maestre, F. T., Guerra, C. A., Eisenhauer, N., Eldridge, D. J., Zhu, Y., Chen, Q., Trivedi, P., Du, S., Makhalanyane, T. P., Verma, J. P., Gozalo, B., Ochoa, V., Asensio, S., Wanh, L., Zaady, E., Illán, J. G., Siebe, C., … He, J. Z. (2022). The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome. https://doi.org/10.1186/s40168-022-01405-w

    Article  Google Scholar 

  • Donagema, G. K., Campos, D. B., Calderano, S. B., Teixeira, W. G., Viana, J. M. (2011) Manual de métodos de análise de solo. Embrapa Solos-Documentos.

  • Faoro, H., Alves, A. C., Souza, E. M., Rigo, L. U., Cruz, L. M., Al-Janabi, S. M., Monteiro, R. A., Baura, V. A., & Pedrosa, F. O. (2010). Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.03025-09

    Article  Google Scholar 

  • Ferreira, P. F. A., Xavier, J. F., Nunes, J. F., Fonseca, I. P., Coelho, S. M. O., Souza, M. M. S., & Coelho, I. S. (2023). Bacteria and antimicrobial resistance profile during the composting process of wastes from animal production. Brazilian Journal of Microbiology. https://doi.org/10.1007/s42770-023-00912-8

    Article  Google Scholar 

  • Garrity, G. M., Bell, J. A., & Liburun, T. G. (2004). Taxonomic outline of prokaryotes. In D. J. Brenner, N. R. Krieg, J. T. Staley, & G. M. Garrity (Eds.), Bergey’s manual of systematic bacteriology (2nd ed., pp. 1–399). Springer.

    Google Scholar 

  • Goss-souza, D., Mendes, L. W., Borges, C. D., Baretta, D., Tsai, S. M., & Rodrigues, J. L. (2017). Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fix109

    Article  Google Scholar 

  • Guerrero, M. G. G. (2023). Sporulation, structure assembly, and germination in the soil bacterium bacillus thuringiensis: Survival and success in the environment and the insect host. Microbiology Research. https://doi.org/10.3390/microbiolres14020035

    Article  Google Scholar 

  • Habig, J., & Swanepoel, C. (2015). Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments. https://doi.org/10.3390/environments2030358

    Article  Google Scholar 

  • Hahne, J., Isele, D., Heilborn, D. H. V., Czaja-hasse, L., Hüttel, B., & Lipski, A. (2019). Galactobacter caseinivorans gen. nov., sp. nov. and Galactobacter valiniphilus sp. nov., two novel species of the family Micrococcaceae, isolated from high bacterial count raw cow’s milk. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.003570

  • Henao, S. G., & Ghneim-herrera, T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2021.604216

    Article  Google Scholar 

  • Hernani, L. C., Freitas, P. D., Pruski, F. F., Maria, I. C., Filho, C. D. C., & Landers, J. N. (2002). A erosão e seu impacto. Uso agrícola dos solos brasileiros. Embrapa Solos.

    Google Scholar 

  • Heydari, A., Kim, N. D., Horswell, J., Gielen, G., Siggins, A., Taylor, M., Bromhead, C., & Palmer, B. R. (2022). Co-selection of heavy metal and antibiotic resistance in soil bacteria from agricultural soils in New Zealand. Sustainability. https://doi.org/10.3390/su14031790

    Article  Google Scholar 

  • Hiraishi, A., & Imhoff, J. F. (2015). Rhodoplanes. In F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, & S. Dedysh (Eds.), Bergey’s manual of systematics of archaea and bacteria (pp. 1–12). Wiley.

    Google Scholar 

  • Hoelzer, K., Wong, N., Thomas, J., Talkington, K., Jungman, E., & Coukell, A. (2017). Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Veterinary Research. https://doi.org/10.1186/s12917-017-1131-3

    Article  Google Scholar 

  • Hu, H. W., Wang, J. T., Singh, B. K., Liu, Y. R., Chen, Y. L., Zhang, Y. J., & He, J. Z. (2018). Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14248

    Article  Google Scholar 

  • Jacobsen, C. S., & Hjelmsø, M. H. (2014). Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology. https://doi.org/10.1016/j.copbio.2013.09.003

    Article  Google Scholar 

  • Johns, I. C., & Adams, E. L. (2015). Trends in antimicrobial resistance in equine bacterial isolates: 1999–2012. Veterinary Record. https://doi.org/10.1136/vr.102708

    Article  Google Scholar 

  • Kassambara, A., & Mundt, F. (2018). Factoextra: Extract and visualize the results of multivariate data analyses. R Packag.

  • Knapp, C. W., Callan, A. C., Aitken, B., Shearn, R., Koenders, A., & Hinwood, A. (2017). Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-7997-y

    Article  Google Scholar 

  • Knapp, C. W., Mccluskey, S. M., Singh, B. K., Campbell, C. D., Hudson, G., & Graham, D. W. (2011). Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS ONE. https://doi.org/10.1371/journal.pone.0027300

    Article  Google Scholar 

  • Korish, M. A., & Attia, Y. A. (2020). Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. https://doi.org/10.3390/ani10040727

    Article  Google Scholar 

  • Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer?: A review. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16193521

    Article  Google Scholar 

  • Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-021-00649-x

    Article  Google Scholar 

  • Li, H. Z., Yang, K., Liao, H., Lassen, S. B., Su, J. Q., Zhang, X., Cui, L., & Zhu, Y. G. (2022). Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2201473119

    Article  Google Scholar 

  • Marques, M. C., & Grelle, C. E. (2021). The Atlantic Forest. Springer.

    Book  Google Scholar 

  • Martone-rocha, S., Dropa, M., Cruz, B. M. C., Leite, D. B. M. O., Santos, T. P., & Razzolini, M. T. P. (2023). Antimicrobial profile of non-typhoidal Salmonella isolated from raw sewage in the Metropolitan Region of São Paulo, Brazil. The Journal of Infection in Developing Countries. https://doi.org/10.3855/jidc.16946

  • Mathew, R. P., Feng, Y. C., Githinji, L., Ankumah, R., & Balkcom, K. S. (2012). Impact of no-tillage and conventional tillage systems on soil microbial communities. Applied and Environmental Soil Science. https://doi.org/10.1155/2012/548620

    Article  Google Scholar 

  • McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. https://doi.org/10.1371/journal.pone.0061217

    Article  Google Scholar 

  • Mendes, L. W., Brossi, M. J. L., Kuramae, E. E., & Tsai, S. M. (2015). Land-use system shapes soil bacterial communities in Southeastern Amazon region. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2015.06.005

    Article  Google Scholar 

  • Methe, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African. https://doi.org/10.1016/j.sciaf.2019.e00246

    Article  Google Scholar 

  • Minari, G. D., Rosalen, D. L., Cruz, M. C. P., Melo, W. J., Alves, L. M. C., & Saran, L. M. (2017). Agricultural management of an Oxisol affect acumulation of heavy metals. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.07.008

    Article  Google Scholar 

  • Miyashita, N. T. (2015). Contrasting soil bacterial community structure between the phyla Acidobacteria and Proteobacteria in tropical Southeast Asian and temperate Japanese forests. Genes & Genetic Systems. https://doi.org/10.1266/ggs.90.61

    Article  Google Scholar 

  • Navarrete, A. A., Kuramae, E. E., Hollander, M., Pijl, A. S., Veen, J. A. V., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology. https://doi.org/10.1111/1574-6941.12018

    Article  Google Scholar 

  • Nhung, N. T., Chansiripornchai, N., & Carrique-mas, J. J. (2017). Antimicrobial resistance in bacterial poultry pathogens: A review. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2017.00126

    Article  Google Scholar 

  • NIST - National Institute of Standards and Technology. Standard Reference Materials -SRM 2709. Addendum Issue Date: 18 Jan. 2002.

  • Núñez, JEV, Sobrinho, NMBDA, & Mazur, N. (2006). Sistemas de preparo de solo e acúmulo de metais pesados no solo e na cultura do pimentão (Capsicum Annum L.). Ciência Rural. https://doi.org/10.1590/S0103-84782006000100017

  • OIE. (2020). World Organization for Animal Health. One Health. Retrieved January 28, 2021, from https:// www.oie.int/en/forthe-media/onehealth/.

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., & Stevens, M. H. H. (2016). Vegan: Community ecology package. R package version 2.4–3. Vienna: R Found. Stat. Comput. Sch.

  • Oliveira, C. C., Lopes, E. S., Barbosa, D. R., Pimenta, R. L., Sobrinho, N. M. B. A., Coelho, S. M. O., Souza, M. M. S., & Coelho, I. S. (2019). Occurrence of the colistin resistance mcr-1 gene in soils from intensive vegetable production and native vegetation. European Journal of Soil Science. https://doi.org/10.1111/ejss.12832

    Article  Google Scholar 

  • Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.962619

    Article  Google Scholar 

  • Patil, I. (2023). ggstatsplot: 'ggplot2' Based Plots with Statistical Details (0.11.0). Zenodo. https://doi.org/10.5281/zenodo.7643705

  • Pereira, A. A., & Thomaz, E. L. (2015). Atributos químicos do solo em áreas sob diferentes sistemas de uso e manejo no município de Reserva-PR. Caminhos de geografia. https://doi.org/10.14393/RCG165528327

  • Perry, J., Waglechner, N., & Wright, G. (2016). The prehistory of antibiotic resistance. Perspectivas De Cold Spring Harbor Na Medicina. https://doi.org/10.1101/cshperspect.a025197

    Article  Google Scholar 

  • Petersen, I. A., Meyer, K. M., & Bohannan, B. J. (2019). Meta-analysis reveals consistent bacterial responses to land use change across the tropics. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2019.00391

    Article  Google Scholar 

  • Pinto, L. F. G., Metzger, J. P., Sparovek, G. (2022). Food production in the Atlantic Forest. São Paulo: Fundação SOS Mata Atlântica.

  • Pirela, M. L. R., Suárez, W. A. B., & Vargas, M. M. B. (2014). Antibiotic-and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela. Revista Colombiana de biotecnologia. https://doi.org/10.15446/rev.colomb.biote.v16n2.41004

  • PMNF (Prefeitura Municipal de Nova Friburgo). (2015) Dados gerais. Available at: http://novafriburgo.rj.gov.br/nova-friburgo/dados-gerais/. Accessed 13 Jun 2023.

  • Poole, K. (2017). At the nexus of antibiotics and metals: The impact of Cu and Zn on antibiotic activity and resistance. Trends in Microbiology. https://doi.org/10.1016/j.tim.2017.04.010

    Article  Google Scholar 

  • Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., Hay, S. I., Jiwakanon, J., Makkar, M., Sariuki, S., Laxminarayan, R., Lubroth, J., Magnusson, U., Ngoc, P. T., Boeckel, T. P. V., & Woolhouse, M. E. J. (2016). Antibiotic resistance is the quintessential one health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene. https://doi.org/10.1093/trstmh/trw048

    Article  Google Scholar 

  • Rocha, F. I., Ribeiro, T. G., Fontes, M. A., Schwab, S., Coelho, M. R. R., Lumbreras, J. F., Motta, P. E. F., Teixeira, W. G., Cole, J., Borsanelli, A. C., Dutra, I. S., Howe, A., Oliveira, A. P., & Jesus, E. D. C. (2021). Land-use system and forest floor explain prokaryotic metacommunity structuring and spatial turnover in Amazonian forest-to-pasture conversion areas. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.657508

    Article  Google Scholar 

  • Ryan, M. P., & Pembroke, J. T. (2018). Brevundimonas spp: Emerging global opportunistic pathogens. Virulence. https://doi.org/10.1080/21505594.2017.1419116

    Article  Google Scholar 

  • Santos, D. D. S. (2019). Metais pesados em áreas agrícolas e Cerrado nativo no Oeste da Bahia. 2019.102 f. Tese. (Doutorado em fitotecnia). Programa de Pós Graduação da Universidade Federal de Uberlandia.

  • Santos, F. D., Fantinel, R. A., Weiler, E. B., & Cruz, J. C. (2021). Fatores que afetam a disponibilidade de micronutrientes no solo. Tecno-Lógica. https://doi.org/10.17058/tecnolog.v25i2.15552

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols. https://doi.org/10.1038/nprot.2008.73

    Article  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  Google Scholar 

  • Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00399

    Article  Google Scholar 

  • Siqueira, J. O., & Franco, A. A. (1988). Biotecnologia do solo: fundamentos e perspectivas. Ministério da Educação e Cultura.

  • Sousa, F. F., do Carmo, M. G. F., Lima, E. S. A, de Souza, C. C. B., do Amaral Sobrinho, N. M. B. (2020). Lead and cadmium transfer factors and the contamination of tomato fruits (Solanum lycopersicum) in a tropical mountain agroecosystem. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-020-02930-w

  • Souza, C. D. C. B., Sobrinho, N. M. B. A., Lima, E. S. A., Lima, J. O., Carmo, M. G. F., & García, A. C. (2019). Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.06.072

    Article  Google Scholar 

  • Stedtfeld, R. D., Guo, X., Stedtfeld, T. M., Sheng, H., Williams, MR, Hauschild, K., Gunturu, S., Tift, L., Wang, F., Howe, A., Chai, B., Yin, D., Cole, J. R., Tiedje, J. M., & Hashsham, S. A. (2018). Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiy130

  • Tellen, V. A., & Yerima, B. P. K. (2018). Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental Systems Research. https://doi.org/10.1186/s40068-018-0106-0

    Article  Google Scholar 

  • Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S. (2017). Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific Reports. https://doi.org/10.1038/srep45289.

  • US EPA (United States Environment Protection Agency). (2007) Method 3051: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Test Methods for Evaluating Solid Waste. Washington DC. Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf. Accessed 08 Jun 2023.

  • Vázquez-Boland, J. A., & Meijer, W. G. (2019). The pathogenic actinobacterium Rhodococcus equi: What’s in a name? Molecular Microbiology. https://doi.org/10.1111/mmi.14267

    Article  Google Scholar 

  • Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fidzgerald, G. F., Chater, K. F., & Sinderen, D. (2007). Genomics of actinobacteria: Tracing the evolutionary history of na ancient phylum. Microbiology and Molecular Biology Reviews. https://doi.org/10.1128/MMBR.00005-07

    Article  Google Scholar 

  • Viana, A. T., Caetano, T., Covas, C., Santos, T., & Mendo, S. (2018). Environmental superbugs: The case study of Pedobacter spp. Environmental Pollution. https://doi.org/10.1016/j.envpol.2018.06.047

    Article  Google Scholar 

  • Volk, L. B. S., Cogo, N. P., & Streck, E. V. (2004). Erosão hídrica influenciada por condições físicas de superfície e subsuperfície do solo resultantes do seu manejo na ausência de cobertura vegetal. Revista Brasileira De Ciência Do Solo. https://doi.org/10.1590/S0100-06832004000400016

    Article  Google Scholar 

  • Wang, F. F., Liu, G. P., Zhang, F., Li, Z. M., Yang, X. L., Yang, C. D., Shen, J. L., He, J. Z., Li, B. L., Zeng, J. G. (2022). Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. Environmental Microbiome. https://doi.org/10.1186/s40793-022-00419-z.

  • Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Rollings, A. S. J., Jones, D. L., Lee, N. M., Otten, W., & Thomas, C. M. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(12)70317-1

    Article  Google Scholar 

  • Willms, I. M., Bolz, S. H., Yuan, J., Krafft, L., Schneider, D., Schöning, I., Schrumpf, M., & Nacke, H. (2021). The ubiquitous soil verrucomicrobial clade ‘Candidatus Udaeobacter’shows preferences for acidic pH. Environmental Microbiology Reports. https://doi.org/10.1111/1758-2229.13006

    Article  Google Scholar 

  • Willms, I. M., Kamran, A., Aßmann, N. F., Krone, D., Bolz, S. H., Fiedler, F., & Nacke, H. (2019). Discovery of novel antibiotic resistance determinants in forest and grassland soil metagenomes. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00460

    Article  Google Scholar 

  • Wright, G. D. (2007). The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology. https://doi.org/10.1038/nrmicro1614

    Article  Google Scholar 

  • Xie, W. Y., Shen, Q., & Zhao, F. J. (2017). Antibiotics and antibiotic resistance from animal manures to soil: A review. European Journal of Soil Science. https://doi.org/10.1111/ejss.12494

    Article  Google Scholar 

  • Yazdankhah, S., Skjerve, E., & Wasteson, Y. (2018). Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microbial Ecology in Health and Disease. https://doi.org/10.1080/16512235.2018.1548248

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially supported by AFRI food safety Grant No. 2021-68015-33495 from the USDA National Institute of Food and Agriculture.

Funding

This work was supported by the Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (FAPERJ) (project E-26/202.740/2018); the Brazilian National Council for Scientific and Technological Development (CNPq) (research fellowships provided to Irene da Silva Coelho - project 309002/2018-4); and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (finance code 001) for the scholarship provided to Paula Fernanda Alves Ferreira.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Fernando Igne Rocha, Adina Howe, Daniele Rodrigues Barbosa, Ederson da Conceição Jesus and Nelson Moura Brasil do Amaral Sobrinho. The first draft of the manuscript was written by Paula Fernanda Alves Ferreira e Irene da Silva Coelho and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Irene da Silva Coelho.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 89 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.F.A., Rocha, F.I., Howe, A. et al. Chemical attributes, bacterial community, and antibiotic resistance genes are affected by intensive use of soil in agro-ecosystems of the Atlantic Forest, Southeastern Brazil. Environ Geochem Health 46, 123 (2024). https://doi.org/10.1007/s10653-024-01894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01894-8

Keywords

Navigation