Skip to main content
Log in

Biomonitoring of mercury and selenium in commercially important shellfish: Distribution pattern, health benefit assessment and consumption advisories

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study aims to explore the concentrations of Se and Hg in shellfish along the Gulf of Mannar (GoM) coast (Southeast India) and to estimate related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in shrimp, crab, and cephalopods ranged from 0.256 to 0.275 mg kg−1, 0.182 to 0.553 mg kg−1, and 0.176 to 0.255 mg kg−1, respectively, whereas Hg concentrations differed from 0.009 to 0.014 mg kg−1, 0.022 to 0.042 mg kg−1 and 0.011 to 0.024 mg kg−1, respectively. Se and Hg content in bamboo shark (C. griseum) was 0.242 mg kg−1 and 0.082 mg kg−1, respectively. The lowest and highest Se concentrations were found in C. indicus (0.176 mg kg−1) and C. natator (0.553 mg kg−1), while Hg was found high in C. griseum (0.082 mg kg−1) and low in P. vannamei (0.009 mg kg−1). Se shellfishes were found in the following order: crabs > shrimp > shark > cephalopods, while that of Hg were shark > crabs > cephalopods > shrimp. Se in shellfish was negatively correlated with trophic level (TL) and size (length and weight), whereas Hg was positively correlated with TL and size. Hg concentrations in shellfish were below the maximum residual limits (MRL) of 0.5 mg kg−1 for crustaceans and cephalopods set by FSSAI, 0.5 mg kg−1 for crustaceans and 1.0 mg kg−1 for cephalopods and sharks prescribed by the European Commission (EC/1881/2006). Se risk–benefit analysis, the AI (actual intake):RDI (recommended daily intake) ratio was > 100%, and the AI:UL (upper limit) ratio was < 100%, indicating that all shellfish have sufficient level of Se to meet daily requirements without exceeding the upper limit (UL). The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of shellfish has no non-carcinogenic health impacts for all age groups. However, despite variations among the examined shellfish, it was consistently observed that they all exhibited a Se:Hg molar ratio > 1. This finding implies that the consumption of shellfish is generally safe in terms of Hg content. The health benefit indexes, Se-HBV and HBVse, consistently showed high positive values across all shellfish, further supporting the protective influence of Se against Hg toxicity and reinforcing the overall safety of shellfish consumption. Enhancing comprehension of food safety analysis, it is crucial to recognize that the elevated Se:Hg ratio in shellfish may be attributed to regular selenoprotein synthesis and the mitigation of Hg toxicity by substituting Se bound to Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are found in the article. The authors wish to acknowledge that the methodology employed in this study has been previously published in our earlier research by Arisekar et al., (2021, 2022, 2023) and Shalini et al., (2020, 2021). We recognize that a portion of the methodology overlaps with our prior work, potentially raising concerns about self-plagiarism. It is important to note that all the authors have collectively consented to the reuse of this methodology and have provided their approval for the publication of this article in the Journal of Environmental Geochemistry and Health

References

  • Adani, P., Sawale, A. A., & Nandhagopal, G. (2022). Bioaccumulation of heavy metals in the food components from water and sediments in the coastal waters of Kalpakkam, Southeast coast of India. Environmental Nanotechnology, Monitoring & Management, 17, 100627.

    Article  CAS  Google Scholar 

  • Ahmad, N. I., Noh, M. F. M., Mahiyuddin, W. R. W., Jaafar, H., Ishak, I., Azmi, W. N. F. W., Veloo, Y., & Hairi, M. H. (2015). Mercury levels of marine fish commonly consumed in Peninsular Malaysia. Environmental Science and Pollution Research, 22, 3672–3686.

    Article  CAS  Google Scholar 

  • Ahmed, A. S. S., Hossain, M. B., Semme, S. A., Babu, S. M. O. F., Hossain, K., & Moniruzzaman, M. (2020). Accumulation of trace elements in selected fish and shellfish species from the largest natural carp fish breeding basin in Asia: A probabilistic human health risk implication. Environmental Science and Pollution Research, 27, 37852–37865.

    Article  CAS  Google Scholar 

  • Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2019). Polycyclic aromatic hydrocarbons and potentially toxic elements in seafood from the Persian Gulf: Presence, trophic transfer, and chronic intake risk assessment. Environmental Geochemistry and Health, 41, 2803–2820.

    Article  CAS  Google Scholar 

  • Anandkumar, A., Nagarajan, R., Prabakaran, K., & Rajaram, R. (2017). Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Regional Studies in Marine Science, 16, 79–88.

    Article  Google Scholar 

  • AOAC, 2015. Heavy Metals in Foods. Inductively coupled plasma–Mass spectrometry. Association of analytical chemists, Maryland, USA, pp. 1–15.

  • Arisekar, U., Shakila, R. J., Shalini, R., & Jeyasekaran, G. (2020). Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from thamirabarani river, the western ghats of south tamil nadu. Marine Pollution Bulletin, 159, 111496.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shalini, R., Sundhar, S., Sangma, S. R., Rathinam, R. B., Albeshr, M. F., Alrefaei, A. F., Naidu, B. C., Kanagaraja, A. & Sahana, M. D. (2023). De-novo exposure assessment of heavy metals in commercially important fresh and dried seafood: Safe for human consumption. Environmental Research, 235, 116672.

  • Arisekar, U., Shakila, R. J., Shalini, R., Sivaraman, B., Jeyasekaran, G., & Malini, N. A. H. (2021). Heavy metal concentration in reef-associated surface sediments, hare island, gulf of mannar marine biosphere reserve (southeast coast of India): The first report on pollution load and biological hazard assessment using geochemical normalization factors and hazard indices. Marine Pollution Bulletin, 162, 111838.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Padmavathy, P., Hari, M. S., & Sudhan, C. (2022). Accumulation potential of heavy metals at different growth stages of pacific white leg shrimp, penaeus vannamei farmed along the southeast coast of peninsular india: A report on ecotoxicology and human health risk assessment. Environmental Research, 212, 113105.

    Article  CAS  Google Scholar 

  • Arulkumar, A., Paramasivam, S., & Rajaram, R. (2017). Toxic heavy metals in commercially important food fishes collected from palk bay. Southeastern India. Marine Pollution Bulletin, 119(1), 454–459.

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry), 2023. Exposure dose guidance for body weight. Atlanta, GA: U.S. Department of health and human services, public health service, jan 31. https://www.atsdr.cdc.gov/pha-guidance/resources/ATSDR-EDG-Body-Weight-508.pdf

  • Azad, A. M., Frantzen, S., Bank, M. S., Johnsen, I. A., Tessier, E., Amouroux, D., Madsen, L., & Maage, A. (2019). Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. Science of the Total Environment, 667, 622–637.

    Article  CAS  Google Scholar 

  • Bonsignore, M., Manta, D. S., Oliveri, E., Sprovieri, M., Basilone, G., Bonanno, A., Falco, F., Traina, A., & Mazzola, S. (2013). Mercury in fishes from Augusta Bay (southern Italy): Risk assessment and health implication. Food and Chemical Toxicology, 56, 184–194.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2012). Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories. Environmental Research, 114, 12–23.

    Article  CAS  Google Scholar 

  • Cabrini, T. M., Barboza, C. A., Skinner, V. B., Hauser-Davis, R. A., Rocha, R. C., Saint’Pierre, T. D., Valentin, J. L., & Cardoso, R. S. (2018). Investigating heavy metal bioaccumulation by macrofauna species from different feeding guilds from sandy beaches in Rio de Janeiro, Brazil. Ecotoxicology and Environmental Safety, 162, 655–662.

    Article  CAS  Google Scholar 

  • Calatayud, M., Devesa, V., Virseda, J. R., Barberá, R., Montoro, R., & Vélez, D. (2012). Mercury and selenium in fish and shellfish: Occurrence, bioaccessibility and uptake by Caco-2 cells. Food and Chemical Toxicology, 50(8), 2696–2702.

    Article  CAS  Google Scholar 

  • Chen, J., Jayachandran, M., Bai, W., & Xu, B. (2022). A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chemistry, 369, 130874.

    Article  CAS  Google Scholar 

  • Copat, C., Vinceti, M., D’Agati, M. G., Arena, G., Mauceri, V., Grasso, A., Fallico, R., Sciacca, S., & Ferrante, M. (2014). Mercury and selenium intake by seafood from the Ionian sea: A risk evaluation. Ecotoxicology and Environmental Safety, 100, 87–92.

    Article  CAS  Google Scholar 

  • Danso, O. P., Asante-Badu, B., Zhang, Z., Song, J., Wang, Z., Yin, X., & Zhu, R. (2023). Selenium biofortification: Strategies, progress and challenges. Agriculture, 13(2), 416.

    Article  CAS  Google Scholar 

  • de Almeida Rodrigues, P., Ferrari, R. G., & do Rosário, D.K.A., de Almeida, C.C., Saint’Pierre, T.D., Hauser-Davis, R.A., Dos Santos, L.N. and Conte-Junior, C.A.,. (2022). Toxic metal and metalloid contamination in seafood from an eutrophic Brazilian estuary and associated public health risks. Marine Pollution Bulletin, 185, 114367.

    Article  Google Scholar 

  • Di Lena, G., Casini, I., Caproni, R., & Orban, E. (2018). Total mercury levels in crustacean species from Italian fishery. Food Additives & Contaminants: Part B, 11(3), 175–182.

    Article  Google Scholar 

  • Dung, L. V., Tue, N. T., Lam, P. V., Quy, T. D., Canh, V. M., Tam, N. D., & Nhuan, M. T. (2023). Stable isotopes (δ13C and δ15N) and trace elements of invertebrates and fish from the coastal waters of ha tinh province, central vietnam. Archives of Environmental Contamination and Toxicology, 85, 229–244.

    Article  CAS  Google Scholar 

  • EC (European Commission), (2006). Regulation (EC) No. 1881/06 of 19 December 2006, Setting maximum levels for certain contaminants in foodstuffs. OJ L 364 of 20 December 2006. http://data.europa.eu/eli/reg/2006/1881/oj

  • EC, (2017). European Commission Regulation, EC No. SANTE/11813/2017 (21–22 November 2017, rev.0) for Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Directorate-general for health and food safety, pp. 1–42

  • EFSA (European Food Safety Authority). (2015). Statement on the benefits of fish/ seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA Journal, 13, 3982. https://doi.org/10.2903/j.efsa.2015.3982

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority), 2012. Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. Panel on contaminants in the food chain (CONTAM). EFSA J 10 (12), 2985. https://doi.org/10.2903/j.efsa.2012.2985.

  • Farkas, A., Salanki, J., & Varanka, I. (2000). Heavy metal concentrations in fish of lake balaton. Lakes & Reservoirs: Research & Management, 5(4), 271–279.

    Article  Google Scholar 

  • Feng, X., Meng, B., Yan, H., Fu, X., Yao, H., Shang, L., Feng, X., Meng, B., Yan, H., Fu, X., & Yao, H. (2018). Bioaccumulation of mercury in aquatic food chains (pp. 339–389). Southwest China, Springer Singapore: Biogeochemical cycle of mercury in reservoir systems in wujiang river basin.

    Google Scholar 

  • Frydrych, A., Krośniak, M., & Jurowski, K. (2023). The Role of chosen essential elements (Zn, Cu, Se, Fe, Mn) in Food for special medical purposes (FSMPs) dedicated to oncology patients—critical review: State-of-the-Art. Nutrients, 15(4), 1012.

    Article  CAS  Google Scholar 

  • FSSAI, 2011. Food safety and standards (Contaminants, toxins and residues) regulations. food safety and standards authority of india. Ministry of health and family welfare, Govt. of India, New Delhi. 1–65 https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Contaminants_Regulations_20_08_2020.pdf

  • Galvao, P., Sus, B., Lailson-Brito, J., Azevedo, A., Malm, O., & Bisi, T. (2021). An upwelling area as a hot spot for mercury biomonitoring in a climate change scenario: A case study with large demersal fishes from Southeast Atlantic (SE-Brazil). Chemosphere, 269, 128718.

    Article  CAS  Google Scholar 

  • El Gammal, M.A.M., Mubark, A.A.A.S. and Ramadhan, G.A., 2016. Estimation of heavy metals in some economic fishes in the Arabian Gulf, Saudi Arabia

  • Gerpe, M. S., de León, A. P., Bastida, R., Moreno, V. J., & Rodríguez, D. H. (2009). Sharp accumulation of heavy metals after weaning in the South American fur seal arctocephalus australis. Marine Ecology Progress Series, 375, 239–245.

    Article  CAS  Google Scholar 

  • Gerson, J. R., Walters, D. M., Eagles-Smith, C. A., Bernhardt, E. S., & Brandt, J. E. (2020). Do two wrongs make a right? Persistent uncertainties regarding environmental selenium–mercury interactions. Environmental Science & Technology, 54(15), 9228–9234.

    Article  CAS  Google Scholar 

  • Ghorai, M., Kumar, V., Kumar, V., Al-Tawaha, A. R., Shekhawat, M. S., Pandey, D. K., Batiha, G. E. S., Bursal, E., Jha, N. K., Gadekar, V. S., & Radha,. (2022). Beneficial role of selenium (se) biofortification in developing resilience against potentially toxic metal and metalloid Stress in crops: Recent trends in genetic engineering and omics approaches. Journal of Soil Science and Plant Nutrition, 22(2), 2347–2377.

    Article  CAS  Google Scholar 

  • Gochfeld, M., & Burger, J. (2021). Mercury interactions with selenium and sulfur and the relevance of the Se: Hg molar ratio to fish consumption advice. Environmental Science and Pollution Research, 28, 18407–18420.

    Article  CAS  Google Scholar 

  • Gong, Y., Chai, M., Ding, H., Shi, C., Wang, Y., & Li, R. (2020). Bioaccumulation and human health risk of shellfish contamination to heavy metals and as in most rapid urbanized shenzhen, China. Environmental Science and Pollution Research, 27, 2096–2106.

    Article  CAS  Google Scholar 

  • Grgec, A. S., Kljaković-Gašpić, Z., Orct, T., Tičina, V., Sekovanić, A., Jurasović, J., & Piasek, M. (2020). Mercury and selenium in fish from the eastern part of the adriatic Sea: A risk-benefit assessment in vulnerable population groups. Chemosphere, 261, 127742.

    Article  Google Scholar 

  • Grgec, A. S., Jurasović, J., Kljaković-Gašpić, Z., Orct, T., Samarin, I. R., Janči, T., Sekovanić, A., Letinić, J. G., Sarić, M. M., Benutić, A., & Capak, K. (2022). Potential risks and health benefits of fish in the diet during the childbearing period: Focus on trace elements and n-3 fatty acid content in commonly consumed fish species from the Adriatic Sea. Environmental Advances, 8, 100226.

    Article  Google Scholar 

  • Griboff, J., Wunderlin, D. A., Horacek, M., & Monferrán, M. V. (2020). Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in argentina. Environmental Science and Pollution Research, 27, 40664–40678.

    Article  CAS  Google Scholar 

  • Grieb, T. M., Bowie, G. L., Driscoll, C. T., Gloss, S. P., Schofield, C. L., & Porcella, D. B. (1990). Factors affecting mercury accumulation in fish in the upper michigan peninsula. Environmental Toxicology and Chemistry: An International Journal, 9(7), 919–930.

    Article  CAS  Google Scholar 

  • Jara-Marini, M. E., Soto-Jiménez, M. F., & Páez-Osuna, F. (2009). Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE gulf of california. Chemosphere, 77(10), 1366–1373.

    Article  CAS  Google Scholar 

  • Javanshir Khoei, A. (2023). A comparative study on the accumulation of toxic heavy metals in fish of the Oman Sea: Effects of fish size, spatial distribution and trophic level. Toxin Reviews, 42(1), 189–196.

    Article  CAS  Google Scholar 

  • Jia, Y., Wang, R., Li, G., Feng, C., Qi, L., Wang, Y., Su, S., Zou, Y., Liu, X., Wang, Y., & Zhang, Y. (2023). Hair selenium of residents in keshan disease endemic and non-endemic regions in china. Biological Trace Element Research, 201(7), 3256–3267.

    Article  CAS  Google Scholar 

  • Jiang, H., Qin, D., Chen, Z., Tang, S., Bai, S., & Mou, Z. (2016). Heavy metal levels in fish from heilongjiang river and potential health risk assessment. Bulletin of Environmental Contamination and Toxicology, 97, 536–542.

    Article  CAS  Google Scholar 

  • Jiang, X., Wang, J., Pan, B., Li, D., Wang, Y., & Liu, X. (2022). Assessment of heavy metal accumulation in freshwater fish of dongting lake, china: Effects of feeding habits, habitat preferences and body size. Journal of Environmental Sciences, 112, 355–365.

    Article  CAS  Google Scholar 

  • Kaneko, J. J., & Ralston, N. V. (2007). Selenium and mercury in pelagic fish in the central north pacific near hawaii. Biological Trace Element Research, 119, 242–254.

    Article  CAS  Google Scholar 

  • Karimi, R., Frisk, M., & Fisher, N. S. (2013). Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota. PLoS ONE, 8(9), e74695.

    Article  CAS  Google Scholar 

  • Kazemi, A., Esmaeilbeigi, M., Ansari, A., Asl, A. G., & Mohammadzadeh, B. (2022). Alterations and health risk assessment of the environmental concentration of heavy metals in the edible tissue of marine fish (Thunnus tonggol) consumed by different cooking methods. Regional Studies in Marine Science, 53, 102361.

    Article  Google Scholar 

  • Kehrig, H. A., Seixas, T. G., Di Beneditto, A. P. M., & Malm, O. (2013). Selenium and mercury in widely consumed seafood from south Atlantic Ocean. Ecotoxicology and Environmental Safety, 93, 156–162.

    Article  CAS  Google Scholar 

  • Kho, F., Koppel, D. J., von Hellfeld, R., Hastings, A., Gissi, F., Cresswell, T., & Higgins, S. (2022). Current understanding of the ecological risk of mercury from subsea oil and gas infrastructure to marine ecosystems. Journal of Hazardous Materials, 438, 129348.

    Article  CAS  Google Scholar 

  • Kortei, N. K., Heymann, M. E., Essuman, E. K., Kpodo, F. M., Akonor, P. T., Lokpo, S. Y., Boadi, N. O., Ayim-Akonor, M., & Tettey, C. (2020). Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from ankobrah and pra basins: Impact of illegal mining activities on food safety. Toxicology Reports, 7, 360–369.

    Article  CAS  Google Scholar 

  • Kumar, P., Sivaperumal, P., Manigandan, V., Rajaram, R., & Hussain, M. (2021). Assessment of potential human health risk due to heavy metal contamination in edible finfish and shellfish collected around ennore coast, India. Environmental Science and Pollution Research, 28, 8151–8167.

    Article  CAS  Google Scholar 

  • Kumar, N., Chandan, N. K., Bhushan, S., Singh, D. K., & Kumar, S. (2023a). Health risk assessment and metal contamination in fish, water and soil sediments in the east Kolkata Wetlands, India. Ramsar Site. Scientific Reports, 13(1), 1546.

    Article  CAS  Google Scholar 

  • Kumar, V., Umesh, M., Shanmugam, M. K., Chakraborty, P., Duhan, L., Gummadi, S. N., Pasrija, R., Jayaraj, I., & Dasarahally Huligowda, L. K. (2023b). A Retrospection on mercury contamination, bioaccumulation, and toxicity in diverse environments: Current insights and future prospects. Sustainability, 15(18), 13292.

    Article  CAS  Google Scholar 

  • Leite, L. A. R., & dos Reis Pedreira Filho, W., de Azevedo, R.K. and Abdallah, V.D.,. (2023). Bioaccumulation and health risk assessment of trace metal contamination in the musculature of the trahira fish (Hoplias malabaricus) from two neotropical rivers in southeastern Brazil. Journal of Trace Elements in Medicine and Biology, 78, 127185.

    Article  CAS  Google Scholar 

  • Li, J., Miao, X., Hao, Y., Xie, Z., Zou, S., & Zhou, C. (2020). Health risk assessment of metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in angling fish with different lengths collected from Liuzhou, China. International Journal of Environmental Research and Public Health, 17(7), 2192.

    Article  CAS  Google Scholar 

  • Liu, J., Cao, L., & Dou, S. (2019). Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Science of the Total Environment, 670, 508–522.

    Article  CAS  Google Scholar 

  • Looi, L. J., Aris, A. Z., Haris, H., Yusoff, F. M., & Hashim, Z. (2016). The levels of mercury, methylmercury and selenium and the selenium health benefit value in grey-eel catfish (Plotosus canius) and giant mudskipper (Periophthalmodon schlosseri) from the strait of malacca. Chemosphere, 152, 265–273.

    Article  CAS  Google Scholar 

  • Luczynska, J., Paszczyk, B., & Łuczyński, M. J. (2018). Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of pluszne lake, poland, and risk assessment for consumer’s health. Ecotoxicology and Environmental Safety, 153, 60–67.

    Article  CAS  Google Scholar 

  • Luo, H., Cheng, Q., He, D., Sun, J., Li, J., & Pan, X. (2023). Recent advances in microbial mercury methylation: A review on methylation habitat, methylator, mechanism, and influencing factor. Process Safety and Environmental Protection, 170, 286–296.

    Article  CAS  Google Scholar 

  • Melgar, M. J., Núñez, R., & García, M. Á. (2019). Selenium intake from tuna in Galicia (Spain): Health risk assessment and protective role against exposure to mercury and inorganic arsenic. Science of the Total Environment, 694, 133716.

    Article  CAS  Google Scholar 

  • Meng, M., Sun, R. Y., Liu, H. W., Yu, B., Yin, Y. G., Hu, L. G., Chen, J. B., Shi, J. B., & Jiang, G. B. (2020). Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. Journal of Hazardous Materials, 384, 121379.

    Article  CAS  Google Scholar 

  • Mirlean, N., Ferraz, A. H., Seus-Arrache, E. R., Andrade, C. F. F., Costa, L. P., & Johannesson, K. H. (2019). Mercury and selenium in the Brazilian subtropical marine products: Food composition and safety. Journal of Food Composition and Analysis, 84, 103310.

    Article  CAS  Google Scholar 

  • Obaidat, M. M., Massadeh, A. M., Al-Athamneh, A. M., & Jaradat, Q. M. (2015). Heavy metals in fish from the Red Sea, Arabian Sea, and Indian Ocean: Effect of origin, fish species and size and correlation among the metals. Environmental Monitoring and Assessment, 187, 1–8.

    Article  CAS  Google Scholar 

  • Plessi, M., Bertelli, D., & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14(5), 461–467.

    Article  CAS  Google Scholar 

  • Pragnya, M., Ajay, B., Kumar, S. D., & Reddy, T. B. (2021). Bioaccumulation of heavy metals in different trophic levels of aquatic ecosystems with fish as a bioindicator in visakhapatnam. India. Marine Pollution Bulletin, 165, 112162.

    Article  CAS  Google Scholar 

  • Qiu, Y. W., & Wang, W. X. (2016). Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of southern china. Environmental Geochemistry and Health, 38, 39–49.

    Article  CAS  Google Scholar 

  • Ralston, N. V. (2008). Selenium health benefit values as seafood safety criteria. EcoHealth, 5, 442–455.

    Article  Google Scholar 

  • Ralston, N. V., Ralston, C. R., & Raymond, L. J. (2016). Selenium health benefit values: Updated criteria for mercury risk assessments. Biological Trace Element Research, 171, 262–269.

    Article  CAS  Google Scholar 

  • Raymond, L. J., & Ralston, N. V. (2020). Mercury: Selenium interactions and health implications. Neurotoxicology, 81, 294–299.

    Article  CAS  Google Scholar 

  • Ren, L., Jiang, W., Geng, J., Yu, T., Ji, G., Zhang, X., Wang, X., & Wang, H. (2023). Sulfur levels regulate the absorption and utilization of selenite in rapeseed (Brassica napus). Environmental and Experimental Botany, 213, 105454.

    Article  CAS  Google Scholar 

  • Ringuet, M. T., Hunne, B., Lenz, M., Bravo, D. M., & Furness, J. B. (2021). Analysis of bioavailability and induction of glutathione peroxidase by dietary nanoelemental, organic and inorganic selenium. Nutrients, 13(4), 1073.

    Article  CAS  Google Scholar 

  • Rodrigues, P. D. A., de Pinho, J. V., Ramos-Filho, A. M., Neves, G. L., & Conte-Junior, C. A. (2023). Mercury contamination in seafood from an aquatic environment impacted by anthropic activity: Seasonality and human health risk. Environmental Science and Pollution Research, 30(36), 85390–85404.

    Article  CAS  Google Scholar 

  • Rupa, S.A., Patwary, M.A.M., Matin, M.M., Ghann, W.E., Uddin, J., & Kazi, M. (2023). Interaction of mercury species with proteins: towards possible mechanism of mercurial toxicology. Toxicology Research, 12(3), 355–368.

    Article  Google Scholar 

  • Sallam, K. I., Abd-Elghany, S. M., & Mohammed, M. A. (2019). Heavy metal residues in some fishes from manzala lake, egypt, and their health-risk assessment. Journal of Food Science, 84(7), 1957–1965.

    Article  CAS  Google Scholar 

  • Sauliutė, G., Markuckas, A., & Stankevičiūtė, M. (2020). Response patterns of biomarkers in omnivorous and carnivorous fish species exposed to multicomponent metal (Cd, Cr, Cu, Ni, Pb and Zn) mixture. Part III. Ecotoxicology, 29, 258–274.

    Article  CAS  Google Scholar 

  • Shalini, R., Jeyasekaran, G., Shakila, R. J., Arisekar, U., Sundhar, S., Jawahar, P., Aanand, S., & HemaMalini, A. (2020). Concentrations of trace elements in the organs of commercially exploited crustaceans and cephalopods caught in the waters of thoothukudi. South India. Marine Pollution Bulletin, 154, 111045.

    Article  CAS  Google Scholar 

  • Shalini, R., Jeyasekaran, G., Shakila, R. J., Sundhar, S., Arisekar, U., Jawahar, P., Aanand, S., Sivaraman, B., Malini, A. H., & Surya, T. (2021). Dietary intake of trace elements from commercially important fish and shellfish of thoothukudi along the southeast coast of India and implications for human health risk assessment. Marine Pollution Bulletin, 173, 113020.

    Article  CAS  Google Scholar 

  • Shree, B. V., & K, R.K. and Nishikant, G.,. (2019). Examining the heavy metal contents of an estuarine ecosystem: Case study from Maharashtra, India. Journal of Coastal Conservation, 23, 977–984.

    Article  Google Scholar 

  • Singh, A.D., Khanna, K., Kour, J., Dhiman, S., Bhardwaj, T., Devi, K., Sharma, N., Kumar, P., Kapoor, N., Sharma, P. and Arora, P., 2023. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, p.137917.

  • Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 46(8), 2782–2788.

    Article  CAS  Google Scholar 

  • Suresh, G., Ramasamy, V., Sundarrajan, M., & Paramasivam, K. (2015). Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala. India. Marine Pollution Bulletin, 91(1), 389–400.

    Article  CAS  Google Scholar 

  • Tan, S., Xu, X., Cheng, H., Wang, J., & Wang, X. (2022). The alteration of gut microbiome community play an important role in mercury biotransformation in largemouth bass. Environmental Research, 204, 112026.

    Article  CAS  Google Scholar 

  • Tomza-Marciniak, A., Pilarczyk, B., Drozd, R., Pilarczyk, R., Juszczak-Czasnojć, M., Havryliak, V., Podlasińska, J., & Udała, J. (2023). Selenium and mercury concentrations, Se: Hg molar ratios and their effect on the antioxidant system in wild mammals. Environmental Pollution, 322, 121234.

    Article  CAS  Google Scholar 

  • Ulaganathan, A., Robinson, J. S., Rajendran, S., Geevaretnam, J., Pandurangan, P., & Durairaj, S. (2022). Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. Journal of Food Composition and Analysis, 105, 104259.

    Article  CAS  Google Scholar 

  • USEPA, (1989). Risk assessment guidance for superfund. human health evaluation Manual, Part A. EPA/540/1–89/002. Office of emergency and remedial response, united states environment protection agency, Washington, D.C. vol. 1

  • USEPA, (1991). Risk assessment guidance for superfund volume 1: Human health evaluation manual (Part B), Development of risk-based preliminary remediation. goals (No. EPA/540/R-92/003). https://www.epa. gov/risk/risk-assessment-guida ncesuperfund-rags-part-b. (Accessed 21 August 2017)

  • USEPA, (2000). Guidance for assessing chemical contaminant data for use in fish advisories, volume II. Risk Assessment and fish consumption limits. united states environmental protection agency, Washington, DC (EPA 823-B- 00–008).

  • USEPA, (2011). Exposure factors handbook: 2011 Edition. Office of research and development, 2011. 504. US Environmental protection agency, Washington. DC. EPA/600/R-090/052F.

  • USEPA, (2012). USEPA-integrated risk information system-RfD, RfC, Oral Slope factor, or inhalation unit risk exposure factor. US environmental protection Ag

  • USFDA, (2022). Technical information on development of FDA/EPA advice about eating fish for those who might become or are pregnant or breastfeeding and children ages 1–11 years. Chemical contaminants & pesticides. Environmental contaminants in food

  • Verma, N., Rachamalla, M., Kumar, P.S. and Dua, K., (2023). Assessment and impact of metal toxicity on wildlife and human health. In metals in water, Elsevier. (pp. 93–110)

  • Vinceti, M., Filippini, T., Biswas, A., Michalke, B., Dhillon, K.S. and Naidu, R., (2024). Selenium: A global contaminant of significant concern to environment and human health. In inorganic contaminants and radionuclides, Elsevier. (pp. 427–480)

  • Viswanathan, C., Azhaguraj, R., Selvanayagam, M., & Raffi, S. M. (2013). Heavy metal levels in different tissues of the blue swimming crab (Portunus pelagicus, Portunidae) collected from ennore estuary. International Journal of Research in Fisheries and Aquaculture, 3(1), 1–6.

    Google Scholar 

  • Wu, Z., Li, P., Dong, H., & Feng, X. (2023). Mercury and selenium co-ingestion assessment via rice consumption using an in-vitro method: bioaccessibility and interactions. Food Research International, 170, 113027.

    Article  CAS  Google Scholar 

  • Xiong, X., Wang, J., Liu, J., & Xiao, T. (2023). Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. Environmental pollution, 340, 122754.

    Article  Google Scholar 

  • Xu, Z., Wu, S., Christie, P., Gao, X., Xu, J., Xu, S., & Liang, P. (2020). Impacts of estuarine dissolved organic matter and suspended particles from fish farming on the biogeochemical cycling of mercury in zhoushan island, eastern China Sea. Science of the Total Environment, 705, 135921.

    Article  CAS  Google Scholar 

  • Yi, Y. J., & Zhang, S. H. (2012). The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environmental Sciences, 13, 1699–1707.

    Article  CAS  Google Scholar 

  • Yin, X., Wang, L., Zhang, L., Chen, H., Liang, X., Lu, X., DiSpirito, A. A., Semrau, J. D., & Gu, B. (2020). Synergistic effects of a chalkophore, methanobactin, on microbial methylation of mercury. Applied and Environmental Microbiology, 86(11), e00122-e220.

    Article  CAS  Google Scholar 

  • Yogeshwaran, A., Gayathiri, K., Muralisankar, T., Gayathri, V., Monica, J. I., Rajaram, R., Marimuthu, K., & Bhavan, P. S. (2020). Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of tuticorin, southeast Coast of India. Marine Pollution Bulletin, 158, 111443.

    Article  CAS  Google Scholar 

  • Younis, E. M., Abdel-Warith, A. W. A., Al-Asgah, N. A., Elthebite, S. A., & Rahman, M. M. (2021). Nutritional value and bioaccumulation of heavy metals in muscle tissues of five commercially important marine fish species from the Red Sea. Saudi Journal of Biological Sciences, 28(3), 1860–1866.

    Article  CAS  Google Scholar 

  • Zampetti, C. J., & Brandt, J. E. (2023). Co-considering selenium concentrations alters mercury-based fish and seafood consumption advice: A data compilation and critical assessment. Environmental Science & Technology Letters, 10(2), 179–185.

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q., & Zheng, D. (2007). Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around huludao zinc plant in china via consumption of vegetables. Science of the Total Environment, 383(1–3), 81–89.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shalini, R., Sundhar, S., Sangma, S.R., Rathinam, R.B., Albeshr, M.F., Alrefaei, A.F., Naidu, B.C., Kanagaraja, A. and Sahana, M.D., 2023. De-novo exposure assessment of heavy metals in commercially important fresh and dried seafood: Safe for human consumption. Environmental Research, 235, 116672.

Download references

Acknowledgements

The authors thank Tamil Nadu Fisheries University (TNFU), specifically the Department of Fish Quality Assurance and Management, for providing the necessary support and facilities to conduct research. The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2024R436) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

UA, RS and SAI helped in conceptualization; SAI, CPKR, UA and RS helped in methodology; SD, KA and SR worked in software; UA, RS, BK and KT helped in formal analysis; UA and RS worked in investigation; NNK, RS, SAI and UA helped in writing—original draft preparation; NNK, SD, KA MFA and KT helped in writing—review and editing; RS and SAI helped in supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ulaganathan Arisekar or Rajendran Shalini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors have consented to participate.

Consent to publish

All authors have consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1387 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arisekar, U., Shalini, R., Iburahim, S.A. et al. Biomonitoring of mercury and selenium in commercially important shellfish: Distribution pattern, health benefit assessment and consumption advisories. Environ Geochem Health 46, 122 (2024). https://doi.org/10.1007/s10653-024-01880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01880-0

Keywords

Navigation