Skip to main content
Log in

Investigating the potential of nanobonechar toward climate-smart agriculture

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Extreme climates and the unpredictability of the weather are significant obstacles to agricultural productivity. This study is the first attempt to explore the capacity of nanobonechar (NBC) for promoting climate-smart agriculture. A pot experiment was performed on maize (Zea mays L.) under a deficit irrigation system (40, 70, and 100% irrigation rates) using different soil application rates of the NBC (0, 0.5, 1, and 2% wt/wt). Additionally, the CO2–C efflux rate and cumulative CO2–C were measured in an incubation experiment. The results indicated the best performance of the 1% NBC treatment under a 70% irrigation rate in terms of the fresh and dry weights of maize plants. Total PO43− and Ca2+ were significantly higher in the plants grown in the NBC-amended soil as compared to the control, showing a gradual increase with an increase in the NBC application rate. The improved productivity of maize plants under a deficit irrigation system was associated with enhanced water-holding capacity, organic matter, and bioavailability of cations (Ca2+, K+, and Na+) and anions (PO43− and NO3) in the soils amended with NBC. The CO2–C efflux rate and cumulative CO2–C emissions remain higher in the NBC-amended soil than in the un-amended soil, pertaining to the high contents of soil organic matter emanating from the NBC. We conclude that NBC could potentially be used as a soil amendment for promoting maize growth under a water stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, M. M., Yaseen, M., & Saqib, S. E. (2022). Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. International Journal of Disaster Risk Reduction, 80, 103210. https://doi.org/10.1016/j.ijdrr.2022.103210

    Article  Google Scholar 

  • Ahmad, A., Ashfaq, M., Rasul, G., Wajid, S. A., Khaliq, T., Rasul, F., & Valdivia, R. O. (2015). Impact of climate change on the rice–wheat cropping system of Pakistan. In Handbook of climate change and Agroecosystems: The agricultural model intercomparison and improvement project integrated crop and economic assessments, Part 2. (pp. 219–258). Doi:https://doi.org/10.1142/9781783265640_0019

  • Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., & Ok, Y. S. (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 17, 717–730. https://doi.org/10.1007/s11368-015-1339-4

    Article  CAS  Google Scholar 

  • Akter, R., Rahman, M. H., Chowdhury, M. A. R., Manirujjaman, M., & Elshenawy, S. E. (2022). Advances of nanotechnology in plant development and crop protection. Applications of Computational Intelligence in Multi-Disciplinary Research (pp. 143–157). Academic Press. https://doi.org/10.1016/B978-0-12-823978-0.00007-1

  • Almazroui, M., Saeed, S., Saeed, F., Islam, M. N., & Ismail, M. (2020). Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Systems and Environment, 4, 297–320. https://doi.org/10.1007/s41748-020-00157-7

    Article  Google Scholar 

  • Almaroai, Y. A., Usman, A. R., Ahmad, M., Moon, D. H., Cho, J. S., Joo, Y. K., & Ok, Y. S. (2014). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences, 71, 1289–1296. https://doi.org/10.1007/s12665-013-2533-6

    Article  CAS  Google Scholar 

  • Arnich, N., Lanhers, M. C., Laurensot, F., Podor, R., Montiel, A., & Burnel, D. (2003). In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environmental Pollution, 124(1), 139–149. https://doi.org/10.1016/S0269-7491(02)00416-5

    Article  CAS  Google Scholar 

  • Ardebili, S. M. S., Taghipoor, A., Solmaz, H., & Mostafaei, M. (2020). The effect of nano-biochar on the performance and emissions of a diesel engine fueled with fusel oil-diesel fuel. Fuel, 268, 117356. https://doi.org/10.1016/j.fuel.2020.117356

    Article  CAS  Google Scholar 

  • Amiri, M. J., Faraji, A., Azizi, M., Nejad, B. G., & Arshadi, M. (2021). Recycling bone waste and cobalt-wastewater into a highly stable and efficient activator of peroxymonosulfate for dye and HEPES degradation. Process Safety and Environmental Protection, 147, 626–641. https://doi.org/10.1016/j.psep.2020.12.039

    Article  CAS  Google Scholar 

  • Boostani, H. R., Hardie, A. G., Najafi-Ghiri, M., et al. (2023). Chemical speciation and release kinetics of Ni in a Ni-contaminated calcareous soil as affected by organic waste biochars and soil moisture regime. Environmental Geochemistry and Health, 45, 199–213. https://doi.org/10.1007/s10653-022-01289-7

    Article  CAS  Google Scholar 

  • Borges, B. M., Strauss, M., Camelo, P. A., Sohi, S. P., & Franco, H. C. (2020). Re-use of sugarcane residue as a novel biochar fertilizer-Increased phosphorus use efficiency and plant yield. Journal of Cleaner Production, 262, 121406. https://doi.org/10.1016/j.jclepro.2020.121406

    Article  CAS  Google Scholar 

  • Carnier, R., de Abreu, C. A., de Andrade, C. A., et al. (2023). Soil quality index as a tool to assess biochars soil quality improvement in a heavy metal-contaminated soil. Environmental Geochemistry and Health, 45, 6027–6041. https://doi.org/10.1007/s10653-023-01602-y

    Article  CAS  Google Scholar 

  • Camargo, N. H., Delima, S. A., & Gemelli, E. (2012). Synthesis and characterization of hydroxyapatite/TiO2 nanocomposites for bone tissue regeneration. American Journal of Biomedical Engineering, 2(2), 41–47. https://doi.org/10.5923/j.ajbe.20120202.08

    Article  Google Scholar 

  • Cruz-Briano, S. A., Medellín-Castillo, N. A., Torres-Dosal, A., Leyva-Ramos, R., Moreno-Piraján, J. C., Giraldo-Gutiérrez, L., & Ocampo-Pérez, R. (2021). Bone char from an invasive aquatic specie as a green adsorbent for fluoride removal in drinking water. Water, Air, & Soil Pollution, 232(9), 346. https://doi.org/10.1007/s11270-021-05286-

    Article  CAS  Google Scholar 

  • Das, S., Chatterjee, S., & Rajbanshi, J. (2022). Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: A meta-analysis. Science of the Total Environment, 805, 150428. https://doi.org/10.1016/j.scitotenv.2021.150428

    Article  CAS  Google Scholar 

  • Estefan, G. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region, 426, 128072. https://hdl.handle.net/20.500.11766/7512

  • Eckstein, David, Künzel, Vera, & Schäfer, Laura. (2021). The global climate risk index 2021. Bonn: Germanwatch.

    Google Scholar 

  • Elvir-Padilla, L. G., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., & Bonilla-Petriciolet, A. (2022). Adsorption of dental clinic pollutants using bone char: Adsorbent preparation, assessment and mechanism analysis. Chemical Engineering Research and Design, 183, 192–202. https://doi.org/10.1016/j.cherd.2022.05.003

    Article  CAS  Google Scholar 

  • El Refaey, A., Mohamed, N. A., Mostafa, H., & Gouda, N. A. (2022). Performance of fast and slow phosphorus release from nano-bone char. Egyptian Journal of Soil Science, 62(3), 223–235. https://doi.org/10.21608/ejss.2022.151212.1519

    Article  Google Scholar 

  • Fatima, I., Ahmad, M., Vithanage, M., & Iqbal, S. (2021). Abstraction of nitrates and phosphates from water by sawdust-and rice husk-derived biochars: Their potential as N-and P-loaded fertilizer for plant productivity in nutrient deficient soil. Journal of Analytical and Applied Pyrolysis, 155, 105073. https://doi.org/10.1016/j.jaap.2021.105073

    Article  CAS  Google Scholar 

  • Ferreira, R. C., Dias, D., Fonseca, I., Bernardo, M., Willimann Pimenta, J. L. C., Lapa, N., & de Barros, M. A. (2022). Multi-component adsorption study by using bone char: Modelling and removal mechanisms. Environmental Technology, 43(6), 789–804. https://doi.org/10.1080/09593330.2020.1805026

    Article  CAS  Google Scholar 

  • Ge, T. D., Sun, N. B., Bai, L. P., Tong, C. L., & Sui, F. G. (2012). Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiologiae Plantarum, 34, 2179–2186. https://doi.org/10.1007/s11738-012-1018-7

    Article  CAS  Google Scholar 

  • Glaser, B., & Lehr, V. I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9(1), 9338. https://doi.org/10.1038/s41598-019-45693-z

    Article  CAS  Google Scholar 

  • Graber, E. R., Singh, B., Hanley, K., & Lehmann, J. (2017). Determination of cation exchange capacity of biochar. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A guide to analytical methods (pp. 74–84). CRC Press.

  • Heyl, K., Garske, B., & Ekardt, F. (2023). Using bone char as phosphate recycling fertiliser: An analysis of the new EU fertilising products regulation. Environmental Sciences Europe, 35(1), 109. https://doi.org/10.1186/s12302-023-00819-z

    Article  CAS  Google Scholar 

  • Hussain, M. M., Bibi, I., Ali, F., Saqib, Z. A., Shahid, M., Niazi, N. K., Hussain, K., Shaheen, S. M., Wang, H., Shakil, Q., & Rinklebe, J. (2023). The role of various ameliorants on geochemical arsenic distribution and CO2-carbon efflux under paddy soil conditions. Environmental Geochemistry and Health, 45, 507–523. https://doi.org/10.1007/s10653-021-01196-3

    Article  CAS  Google Scholar 

  • Huang, Y., Tao, B., Lal, R., Lorenz, K., Jacinthe, P. A., Shrestha, R. K., & Ren, W. (2023). A global synthesis of biochar’s sustainability in climate-smart agriculture-evidence from field and laboratory experiments. Renewable and Sustainable Energy Reviews, 172, 113042. https://doi.org/10.1016/j.rser.2022.113042

    Article  CAS  Google Scholar 

  • Imran, M. A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., & Ma, C. (2018). Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab. Pakistan. Sustainability, 10(6), 2101. https://doi.org/10.3390/su10062101

    Article  Google Scholar 

  • Imran, M. A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., & Ma, C. (2019). Impact of climate smart agriculture (CSA) through sustainable irrigation management on resource use efficiency: A sustainable production alternative for cotton. Land Use Policy, 88, 104113. https://doi.org/10.1016/j.landusepol.2019.104113

    Article  Google Scholar 

  • Jariwala, H., Santos, R. M., Lauzon, J. D., Dutta, A., & Wai Chiang, Y. (2022). Controlled release fertilizers (CRFs) for climate-smart agriculture practices: A comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environmental Science and Pollution Research, 29(36), 53967–53995. https://doi.org/10.1007/s11356-022-20890-y

    Article  CAS  Google Scholar 

  • Johnson, C. J., McKenzie, D., Pedersen, J. A., & Aiken, J. M. (2011). Meat and bone meal and mineral feed additives may increase the risk of oral prion disease transmission. Journal of Toxicology and Environmental Health, 74, 161–166. https://doi.org/10.1080/15287394.2011.529066

    Article  CAS  Google Scholar 

  • Khan, B. A., Ahmad, M., Iqbal, S., Bolan, N., Zubair, S., Shafique, M. A., & Shah, A. (2022). Effectiveness of the engineered pinecone-derived biochar for the removal of fluoride from water. Environmental Research, 212, 113540. https://doi.org/10.1016/j.envres.2022.113540

    Article  CAS  Google Scholar 

  • Kumari, K. G. I. D., Moldrup, P., Paradelo, M., Elsgaard, L., Hauggaard-Nielsen, H., & de Jonge, L. W. (2014). Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient. Journal of Environmental Quality, 43(2), 647–657. https://doi.org/10.2134/jeq2013.08.0334

    Article  CAS  Google Scholar 

  • Li, L. P., Liu, Y. H., Ren, D., & Wang, J. J. (2022). Characteristics and chlorine reactivity of biochar-derived dissolved organic matter: Effects of feedstock type and pyrolysis temperature. Water Research, 211, 118044. https://doi.org/10.1016/j.watres.2022.118044

    Article  CAS  Google Scholar 

  • Mei, H., Huang, W., Wang, Y., Xu, T., Zhao, L., Zhang, D., & Pan, X. (2022). One stone two birds: Bone char as a cost-effective material for stabilizing multiple heavy metals in soil and promoting crop growth. Science of the Total Environment, 840, 156163. https://doi.org/10.1016/j.scitotenv.2022.156163

    Article  CAS  Google Scholar 

  • Mohammed, S., Mirzaei, M., Pappné Törő, Á., Anari, M. G., Moghiseh, E., Asadi, H., & Harsányi, E. (2022). Soil carbon dioxide emissions from maize (Zea mays L.) fields as influenced by tillage management and climate. Irrigation and Drainage, 71(1), 228–240. https://doi.org/10.1002/ird.2633

    Article  Google Scholar 

  • Mustapha, Y., Manu, I., & Alhassan, I. (2022). Use of biochar for enhance carbon sequestration to mitigate climate change and growth of maize in Sudan savanna zone of Nigeria. Brazilian Journal of Science, 1(12), 63–75. https://doi.org/10.14295/bjs.v1i12.207

    Article  Google Scholar 

  • Naghdi, M., Taheran, M., Brar, S. K., Rouissi, T., Verma, M., Surampalli, R. Y., & Valero, J. R. (2017). A green method for production of nanobiochar by ball milling-optimization and characterization. Journal of Cleaner Production, 164, 1394–1405. https://doi.org/10.1016/j.jclepro.2017.07.084

    Article  CAS  Google Scholar 

  • Nguyen, D. V., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., Nguyen, A. T., Dinh, N. T. T., Hoang, S. A., & Ha, C. V. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 41, 364–375. https://doi.org/10.1007/s00344-021-10301-w

    Article  CAS  Google Scholar 

  • Nyambo, P., Mupambwa, H. A., & Nciizah, A. D. (2020). Biochar enhances the capacity of climate-smart agriculture to mitigate climate change (pp. 1–18). Handbook of Climate Change Management: Research, Leadership, Transformation.

    Google Scholar 

  • Patel, S., Han, J., Qiu, W., & Gao, W. (2015). Synthesis and characterization of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. Journal of Environmental Chemical Engineering, 3(4), 2368–2377. https://doi.org/10.1016/j.jece.2015.07.031

    Article  CAS  Google Scholar 

  • Raguraj, S., Wijayathunga, W. M. S., Gunaratne, G. P., Amali, R. K. A., Priyadarshana, G., Sandaruwan, C., & Kottegoda, N. (2020). Urea–hydroxyapatite nanohybrid as an efficient nutrient source in Camellia sinensis (L.) Kuntze (tea). Journal of Plant Nutrition, 43(15), 2383–2394. https://doi.org/10.1080/01904167.2020.1771576

    Article  CAS  Google Scholar 

  • Saleh, M., El-Refaey, A. A., & Eldamarawy, Y. A. E. (2020). CO2 emissions and soil organic carbon in calcareous soils as affected by bonechar and phosphate rock. Egyptian Journal of Soil Science, 60(4), 365–375. https://doi.org/10.21608/ejss.2020.32612.1363

    Article  Google Scholar 

  • Saleem, H., Ahmad, M., Rashid, J., Ahmad, M., Al-Wabel, M. I., & Memuna, A. M. I. N. (2022). Carbon potentials of different biochars derived from municipal solid waste in a saline soil. Pedosphere, 32(2), 283–293. https://doi.org/10.1016/S1002-0160(21)60073-5

    Article  CAS  Google Scholar 

  • Sani, M. N. H., Amin, M., Siddique, A. B., Nasif, S. O., Ghaley, B. B., Ge, L., & Yong, J. W. H. (2023). Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2023.166881

    Article  Google Scholar 

  • Shahid, M. K., Kim, J. Y., & Choi, Y. G. (2019). Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water. Groundwater for Sustainable Development, 8, 324–331. https://doi.org/10.1016/j.gsd.2018.12.003

    Article  Google Scholar 

  • Shahid, M. K., Kim, J. Y., Shin, G., & Choi, Y. (2020). Effect of pyrolysis conditions on characteristics and fluoride adsorptive performance of bone char derived from bone residue. Journal of Water Process Engineering, 37, 101499. https://doi.org/10.1016/j.jwpe.2020.101499

    Article  Google Scholar 

  • Shafiq, F., Anwar, S., Zhang, L., & Ashraf, M. (2023). Nano-biochar: Properties and prospects for sustainable agriculture. Land Degradation & DevElopment, 34, 2445–2463. https://doi.org/10.1002/ldr.4620

    Article  Google Scholar 

  • Sun, Y., Wang, C., Chen, H. Y. H., & Ruan, H. (2020). Response of plants to water stress: A meta-analysis. Frontiers in Plant Science, 11, 2020. https://doi.org/10.3389/fpls.2020.00978

    Article  Google Scholar 

  • Thomas G.W. (1996). Soil pH and soil acidity: Methods for soil analysis Part 3 Chemical methods sparks. In: D. L. Sparks (Ed.) Soil Science Society of America American Society of Agronomy, Madison, USA. (pp. 475–490) https://doi.org/10.2136/sssabookser5.3.c16

  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/technology, 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  • Ullah, I., Ma, X., Yin, J., Saleem, F., Syed, S., Omer, A., & Arshad, M. (2022). Observed changes in seasonal drought characteristics and their possible potential drivers over Pakistan. International Journal of Climatology, 42(3), 1576–1596. https://doi.org/10.1002/joc.7321

    Article  Google Scholar 

  • Wambi, W., Otienno, G., Tumwesigye, W., & Mulumba, J. (2021). Genetic and genomic resources for finger millet improvement: Opportunities for advancing climate-smart agriculture. Journal of Crop Improvement, 35(2), 204–233. https://doi.org/10.1080/15427528.2020.1808133

    Article  CAS  Google Scholar 

  • Walkley, I. A. B. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Yang, F., Lee, X., Theng, B. K. G., Cheng, J., & Wang, Q. (2017). Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil. Environmental Geochemistry and Health, 39, 635–647. https://doi.org/10.1007/s10653-016-9838-9

    Article  CAS  Google Scholar 

  • Younis, S. A., Kim, K. H., Shaheen, S. M., Antoniadis, V., Tsang, Y. F., Rinklebe, J., Deep, A., & Brown, R. J. C. (2021). Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renewable and Sustainable Energy Reviews, 152, 111686. https://doi.org/10.1016/j.rser.2021.111686

    Article  CAS  Google Scholar 

  • Zhou, X., Zeng, Z., Zeng, G., Lai, C., Xiao, R., Liu, S., & Wang, Z. (2020). Insight into the mechanism of persulfate activated by bone char: Unraveling the role of functional structure of biochar. Chemical Engineering Journal, 401, 126127.

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially supported by the University Research Fund (URF) of Quaid-i-Azam University.

Author information

Authors and Affiliations

Authors

Contributions

HI contributed to conceptualization, experimentation, formal analysis, data curation, and writing original draft. SN contributed to formal analysis, data curation, reviewing, and editing. MA contributed to conceptualization, supervision, data interpretation, writing original draft, reviewing, and editing.

Corresponding author

Correspondence to Mahtab Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary File 1 (DOCX 75 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, H., Naeem, S. & Ahmad, M. Investigating the potential of nanobonechar toward climate-smart agriculture. Environ Geochem Health 46, 128 (2024). https://doi.org/10.1007/s10653-024-01899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01899-3

Keywords

Navigation