Skip to main content
Log in

Model for Speed Performance of Quantum-Dot Waveguide Photodiode

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A model is proposed that makes it possible to analytically analyze the speed performance of a waveguide pin photodiode with a light-absorbing region representing a multilayered array of quantum dots separated by undoped spacers. It is shown that there is an optimal number of layers of quantum dots, as well as an optimal thickness of the spacers, which provide the widest bandwidth. The possibility of achieving a frequency range (at the level of –3 dB) above 20 GHz for waveguide photodiodes based on InGaAs/GaAs quantum well-dots is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, J. E. Bowers. Opt. Express, 25 (22), 27715 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. N. V. Kryzhanovskay, F. I. Zubov, E. I. Moiseev, A. S. Dragunova, K. A. Ivanov, M. V. Maximov, N. A. Kaluzhnyy, S. A. Mintairov, S. V. Mikushev, M. M. Kulagina, J. A. Guseva, A. I. Likhachev, A. E. Zhukov. Laser Phys. Lett., 19 (1), 016201 (2022).

    Article  ADS  Google Scholar 

  3. D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, J. E. Bowers. Appl. Phys. Lett., 113 (9), 093506 (2018).

    Article  ADS  Google Scholar 

  4. J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, B. Chen. ACS Photonics, 6 (5), 1100 (2019).

    Article  CAS  Google Scholar 

  5. A. Zhukov, S. Blokhin, N. Maleev, N. Kryzhanovskaya, E. Moiseev, A, Nadtochiy, S. Mintairov, N. Kalyuzhnyy, F. Zubov, M. Maximov. Opt. Express, 29 (25), 40677 (2021).

    Article  ADS  CAS  Google Scholar 

  6. N. V. Kryzhanovskaya, S. A. Blokhin, I. S. Makhov, E. I. Moiseev, A. M. Nadtochiy, N. A. Fominykh, S. A. Mintairov, N. A. Kalyuzhny, Yu. A. Guseva, M. M. Kulagina, F. I. Zubov, E. S. Kolodezny, M. V. Maksimov, A. E. Zhukov. FTP, 57 (3), 198 (2023). (in Russian).

    Google Scholar 

  7. B. Tossoun, G. Kurczveil, S. Srinivasan, A. Descos, D. Liang, R. G. Beausoleil. Optics Lett., 46 (16), 3821 (2021).

    Article  ADS  Google Scholar 

  8. X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, H. Z. Zheng. Electron. Lett., 45 (6), 329 (2009).

    Article  ADS  Google Scholar 

  9. O. Baklenov, H. Nie, K. A. Anselm, J. C. Campbell, B. G. Streetman. Electron. Lett., 34 (7), 694 (1998).

    Article  ADS  CAS  Google Scholar 

  10. W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, J. I. Chyi. Phys. Rev. B, 66 (19), 195337 (2002).

    Article  ADS  Google Scholar 

  11. V. V. Nikolaev, E. A. Avrutin. IEEE J. Quant. Electron., 39 (12), 1653 (2003).

    Article  ADS  CAS  Google Scholar 

  12. I. Pisarenko, E. Ryndin. Electronics, 5 (3), 52 (2016).

    Article  Google Scholar 

  13. A. O. Goushcha, B. Tabbert. Opt. Eng., 56 (9), 097101 (2017).

    Article  ADS  Google Scholar 

  14. A. M. Nadtochiy, N. Yu. Gordeev, A. A. Kharchenko, S. A. Mintairov, N. A. Kalyuzhnyy, Yu. S. Berdnikov, Yu. M. Shernyakov, M. V. Maximov, A. E. Zhukov. J. Lightwave Technol., 39 (23), 7479 (2021).

    CAS  Google Scholar 

  15. S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. A. Ruvimov, A. E. Zhukov. Nanotechnology, 26 (38), 385202 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. S. Zi. Fizika poluprovodnikovyk priborov (M., Mir, 1984) v. 2. (in Russian).

  17. Si Photodiodes, Technical notes. https://www.hamamatsu.com/ content/dam/hamamatsu-photonics/sites/documents/ 99_SALES_LIBRARY/ssd/si_pd_kspd9001e.pdf

  18. Insights into High-Speed Detectors and High-Frequency Techniques https://www.newport.com/n/insights-into-high-speed- detectors-and-high-frequency-techniques

  19. I. Krestnikov, D. Livshits, S. Mikhrin, A. Kozhukhov, A. Kovsh, N. Ledentsov, A. Zhukov. Electron. Lett., 41 (24), 1330 (2005).

    Article  ADS  CAS  Google Scholar 

  20. A. McWilliam, A. A. Lagatsky, C. T. A. Brown, W. Sibbett, A. E. Zhukov, V. M. Ustinov, A. P. Vasil’ev, E. U. Rafailov. Optics Lett., 31 (10), 1444 (2006).

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The studies were carried out as part of the Fundamental Research Program of the National Research University Higher School of Economics. M.V. Maximov, and F.I. Zubov acknowledge project FSRM-2023-0010 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Zhukov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.E., Kryzhanovskaya, N.V., Makhov, I.S. et al. Model for Speed Performance of Quantum-Dot Waveguide Photodiode. Semiconductors 57, 632–637 (2023). https://doi.org/10.1134/S1063782623050184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623050184

Keywords:

Navigation