Skip to main content
Log in

Diagnostic yield from cardiac gene testing for inherited cardiac conditions and re-evaluation of pre-ACMG variants of uncertain significance

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Inherited cardiomyopathies (HCM, DCM, ACM) and cardiac ion channelopathies (long QT/Brugada syndromes, CPVT) are associated with significant morbidity and mortality; however, diagnosis of a familial pathogenic variant in a proband allows for subsequent cascade screening of their at-risk relatives.

Aims

We investigated the diagnostic yield from cardiac gene panel testing and reviewed variants of uncertain significance from patients attending three specialist cardiogenetics services in Ireland in the years 2002 to 2020.

Results

Reviewing molecular genetic diagnostic reports of 834 patients from 820 families, the initial diagnostic yield of pathogenic/likely pathogenic variants was 237/834 patients (28.4%), increasing to 276/834 patients (33.1%) following re-evaluation of cases with variant(s) of uncertain significance. Altogether, 42/85 patients with VUS reviewed (49.4%) had a re-classification that could change their clinical management. Females were more likely to carry pathogenic/likely pathogenic variants than males (139/374, 37.2% vs 137/460, 29.8%, respectively, p = 0.03), and the diagnostic yields were highest in the 0 to < 2 years age group (6/12, 50.0%) and amongst those tested for cardiomyopathy gene panels (13/35, 37.1%). Variants in the MYBPC3/MYH7 (87/109, 79.8%) and KCNQ1/KCNH2 (91/100, 91.0%) genes were the predominant genetic causes for hypertrophic cardiomyopathy and long QT syndrome, respectively.

Conclusion

Our study highlights the importance of collation and review of pre-ACMG genetic variants to increase diagnostic utility of genetic testing for inherited heart disease. Almost half of patients with pre-ACMG VUS reviewed had their variant re-classified to likely pathogenic/likely benign which resulted in a positive clinical impact for patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated and analysed during this study can be found within the published article and its supplementary files.

References

  1. Walsh R, Cook SA (2017) Issues and challenges in diagnostic sequencing for inherited cardiac conditions. Clin Chem 63(1):116–128. https://doi.org/10.1373/clinchem.2016.254698

    Article  CAS  PubMed  Google Scholar 

  2. Martinez HR, Beasley GS, Miller N et al (2021) Clinical insights into heritable cardiomyopathies. Front Genet 12:650. https://doi.org/10.3389/FGENE.2021.663450/BIBTEX

    Article  Google Scholar 

  3. Garcia-Elias A, Benito B (2018) Ion channel disorders and sudden cardiac death. Int J Mol Sci 19(3):692. https://doi.org/10.3390/IJMS19030692

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harper AR, Goel A, Grace C et al (2021) Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 532(53):135–142. https://doi.org/10.1038/s41588-020-00764-0

    Article  CAS  Google Scholar 

  5. Walsh R, Tadros R, Bezzina CR (2020) When genetic burden reaches threshold. Eur Heart J 41:3849–3855. https://doi.org/10.1093/EURHEARTJ/EHAA269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nunn LM, Lambiase PD (2011) Genetics and cardiovascular disease - causes and prevention of unexpected sudden adult death: the role of the SADS clinic. Heart 97:1122–1127. https://doi.org/10.1136/hrt.2010.218511

    Article  CAS  PubMed  Google Scholar 

  7. Musunuru K, Hershberger RE, Day SM et al (2020) Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genomic Precis Med 13:373–385. https://doi.org/10.1161/HCG.0000000000000067

    Article  Google Scholar 

  8. Girolami F, Frisso G, Benelli M et al (2018) Contemporary genetic testing in inherited cardiac disease: tools, ethical issues, and clinical applications. J Cardiovasc Med (Hagerstown) 19:1. https://doi.org/10.2459/JCM.0000000000000589

    Article  PubMed  Google Scholar 

  9. Ghosh R, Harrison SM, Rehm HL et al (2018) Updated recommendation for the benign stand-alone ACMG/AMP criterion. Hum Mutat 39:1525–1530. https://doi.org/10.1002/HUMU.23642

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clinical Genome Resource (2021) ClinGen sequence variant interpretation recommendation for de novo criteria (PS2/PM6). Available from: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/

  11. Brnich SE, Abou Tayoun AN, Couch FJ et al (2019) Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 12:1–12. https://doi.org/10.1186/S13073-019-0690-2/TABLES/3

    Article  Google Scholar 

  12. Biesecker LG, Harrison SM (2018) The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 2012(20):1687–1688. https://doi.org/10.1038/gim.2018.42

    Article  Google Scholar 

  13. Sophia Genetics Sequence Variant Interpretation Software: Alamut Visual Plus. Available from: https://www.sophiagenetics.com/platform/alamut-visual-plus/

  14. Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nat 5817809(581):434–443. https://doi.org/10.1038/s41586-020-2308-7

    Article  CAS  ADS  Google Scholar 

  15. Landrum MJ, Lee JM, Riley GR et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980. https://doi.org/10.1093/NAR/GKT1113

    Article  CAS  PubMed  Google Scholar 

  16. Kopanos C, Tsiolkas V, Kouris A et al (2019) VarSome: the human genomic variant search engine. Bioinformatics 35:1978. https://doi.org/10.1093/BIOINFORMATICS/BTY897

    Article  CAS  PubMed  Google Scholar 

  17. Da E, Rodrigues S, Griffith S et al (2022) Variant-level matching for diagnosis and discovery: challenges and opportunities. Hum Mutat. https://doi.org/10.1002/HUMU.24359

    Article  Google Scholar 

  18. National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 2023 Sept 19]. Available from: https://pubmed.ncbi.nlm.nih.gov/

  19. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517. https://doi.org/10.1093/NAR/GKI033

    Article  CAS  PubMed  Google Scholar 

  20. van Lint FHM, Mook ORF, Alders M et al (2019) Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance. Netherlands Hear J. https://doi.org/10.1007/s12471-019-1250-5

    Article  Google Scholar 

  21. Alfares AA, Kelly MA, McDermott G et al (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. https://doi.org/10.1038/gim.2014.205

    Article  PubMed  Google Scholar 

  22. Le Scouarnec S, Karakachoff M, Gourraud JB et al (2015) Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet 24:2757–2763. https://doi.org/10.1093/HMG/DDV036

    Article  PubMed  Google Scholar 

  23. Pugh TJ, Kelly MA, Gowrisankar S et al (2014) The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med 16:601–608. https://doi.org/10.1038/GIM.2013.204/ATTACHMENT/49FB8C1E-1712-4D23-AEB4-160959380105/MMC3.PDF

    Article  CAS  PubMed  Google Scholar 

  24. Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear Rhythm 8:1308–1339. https://doi.org/10.1016/J.HRTHM.2011.05.020

    Article  Google Scholar 

  25. Bai R, Napolitano C, Bloise R et al (2009) Yield of genetic screening in inherited cardiac channelopathies how to prioritize access to genetic testing. Circ Arrhythmia Electrophysiol 2:6–15. https://doi.org/10.1161/CIRCEP.108.782888

    Article  CAS  Google Scholar 

  26. Crotti L, Marcou CA, Tester DJ et al (2012) Spectrum and prevalence of mutations involving Br S1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol 60:1410–1418. https://doi.org/10.1016/J.JACC.2012.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van DSL, Ommen SR, Tajik AJ et al (2005) Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc 80:739–744. https://doi.org/10.4065/80.6.739

    Article  Google Scholar 

  28. Van Spaendonck-Zwarts KY, Van Rijsingen IAW, Van Den Berg MP et al (2013) Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years’ experience. Eur J Heart Fail 15:628–636. https://doi.org/10.1093/EURJHF/HFT013

    Article  PubMed  Google Scholar 

  29. McKenna WJ, Judge DP (2020) Epidemiology of the inherited cardiomyopathies. Nat Rev Cardiol 181(18):22–36. https://doi.org/10.1038/s41569-020-0428-2

    Article  Google Scholar 

  30. Butters A, Lakdawala NK, Ingles J (2021) Sex differences in hypertrophic cardiomyopathy: interaction with genetics and environment. Curr Heart Fail Rep 18:264. https://doi.org/10.1007/S11897-021-00526-X

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lakdawala NK, Olivotto I, Day SM et al (2021) Associations between female sex, sarcomere variants, and clinical outcomes in hypertrophic cardiomyopathy. Circ Genomic Precis Med 14:3062. https://doi.org/10.1161/CIRCGEN.120.003062

    Article  CAS  Google Scholar 

  32. Watkins H (2021) Time to think differently about sarcomere-negative hypertrophic cardiomyopathy. Circulation 143:2415–2417. https://doi.org/10.1161/CIRCULATIONAHA.121.053527

    Article  PubMed  Google Scholar 

  33. Van Der Crabben SN, Mörner S, Lundström AC et al (2022) Should variants of unknown significance (VUS) be disclosed to patients in cardiogenetics or not; only in case of high suspicion of pathogenicity? Eur J Hum Genet 30:1208–1210. https://doi.org/10.1038/s41431-022-01173-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  35. Landstrom AP, Kim JJ, Gelb BD et al (2021) Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the American Heart Association. Circ Genomic Precis Med 14:e000086. https://doi.org/10.1161/HCG.0000000000000086

    Article  Google Scholar 

  36. Arbustini E, Behr ER, Carrier L et al (2022) Interpretation and actionability of genetic variants in cardiomyopathies: a position statement from the European Society of Cardiology Council on cardiovascular genomics. Eur Heart J. https://doi.org/10.1093/EURHEARTJ/EHAB895

    Article  PubMed  Google Scholar 

  37. Walsh R, Lahrouchi N, Tadros R et al (2020) Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet Med 231(23):47–58. https://doi.org/10.1038/s41436-020-00946-5

    Article  CAS  Google Scholar 

  38. VanDyke RE, Hashimoto S, Morales A et al (2021) Impact of variant reclassification in the clinical setting of cardiovascular genetics. J Genet Couns 30:503–512. https://doi.org/10.1002/JGC4.1336

    Article  PubMed  Google Scholar 

  39. Rehm HL, Berg JS, Brooks LD et al (2015) ClinGen — the clinical genome resource. N Engl J Med 372:2235–2242. https://doi.org/10.1056/NEJMSR1406261/SUPPL_FILE/NEJMSR1406261_DISCLOSURES.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walsh R, Mazzarotto F, Whiffin N et al (2019) Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med 11:1–18. https://doi.org/10.1186/S13073-019-0616-Z/FIGURES/5

    Article  Google Scholar 

  41. Jarvik GP, Browning BL (2016) Consideration of cosegregation in the pathogenicity classification of genomic variants. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2016.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walsh R, Thomson KL, Ware JS et al (2017) Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med 19:192–203. https://doi.org/10.1038/GIM.2016.90/ATTACHMENT/F26B531E-29C9-484A-89E2-F32E31AD3AC4/MMC1.ZIP

    Article  PubMed  Google Scholar 

  43. Kelly MA, Caleshu C, Morales A et al (2018) Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med 20:351–359. https://doi.org/10.1038/GIM.2017.218/ATTACHMENT/FCA54B0A-3B4C-4659-BF33-1B2C8F7656E5/MMC7.XLSX

    Article  PubMed  PubMed Central  Google Scholar 

  44. Whiffin N, Minikel E, Walsh R et al (2017) Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med 1910(19):1151–1158. https://doi.org/10.1038/gim.2017.26

    Article  Google Scholar 

  45. McVeigh TP, Kelly LJ, Whitmore E et al (2019) Managing uncertainty in inherited cardiac pathologies—an international multidisciplinary survey. Eur J Hum Genet 27:1178. https://doi.org/10.1038/S41431-019-0391-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ellard S, Baple EL, Callaway A et al (2020) ACGS best practice guidelines for variant classification in rare disease 2020. Available from: https://www.acgs.uk.com/quality/best-practice-guidelines/

  47. Harrison SM, Dolinsky JS, Knight Johnson AE et al (2017) Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar. Genet Med 19:1096–1104. https://doi.org/10.1038/GIM.2017.14/ATTACHMENT/634C6EE6-9A82-4199-BBEC-BDB908B26917/MMC5.XLSX

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bland A, Harrington EA, Dunn K et al (2018) Clinically impactful differences in variant interpretation between clinicians and testing laboratories: a single-center experience. Genet Med 20:369–373. https://doi.org/10.1038/GIM.2017.212/ATTACHMENT/1DFBE69E-BABC-41E2-A59E-9962A898CE49/MMC1.PDF

    Article  PubMed  Google Scholar 

  49. Agaoglu NB, Unal B, Akgun Dogan O et al (2022) Consistency of variant interpretations among bioinformaticians and clinical geneticists in hereditary cancer panels. Eur J Hum Genet 303(30):378–383. https://doi.org/10.1038/s41431-022-01060-7

    Article  CAS  Google Scholar 

  50. Deans ZC, Ahn JW, Carreira IM et al (2022) Recommendations for reporting results of diagnostic genomic testing. Eur J Hum Genet 2022:1–6. https://doi.org/10.1038/s41431-022-01091-0

    Article  Google Scholar 

  51. Hedley PL, Jørgensen P, Schlamowitz S et al (2009) The genetic basis of long QT and short QT syndromes: a mutation update. Hum Mutat 30:1486–1511. https://doi.org/10.1002/HUMU.21106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and healthcare providers from the various clinical services who facilitated this study. We acknowledge the scientists of the Next Generation Sequencing Laboratory of the Mater Misericordiae University Hospital, Dublin, for technical assistance provided during the study, with particular thanks to Sarada Gandhi Kolli for assistance with genetic variant interpretation.

Funding

Jane Murphy, Claire Kirk, Deborah Lambert, and Sally Ann Lynch were funded by grants from the National Children’s Research Centre, Crumlin, Ireland (Grant No. C/18/14), and the Higher Education Authority COVID-19 Extensions Programme. Terri McVeigh was supported at the time of the research by a HRB/HSE National Academic Specialist Registrar Fellowship award (HSE/HRB NSAFP 2014/1). We are also grateful to the European Joint Programme for Rare Diseases (EJP-RD) who funded Jane Murphy for a training fellowship with the groups of Prof Connie Bezzina and Dr Saskia Van der Crabben of University of Amsterdam Academic Medical Centre, Netherlands.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: JM and SAL. Generated the study data: JM, CK, CMcG, TP, JG, DW, SAL. Performed the analyses: JM. Wrote the paper: JM. Assisted in drafting the manuscript: SAL, RW, TPMcV, DML. Critically revised the final manuscripts: JM, CK, DML, CMcG, RW, TPMcV, LJK, TP, DW, JG, SAL.

Corresponding author

Correspondence to Jane Murphy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, J., Kirk, C.W., Lambert, D.M. et al. Diagnostic yield from cardiac gene testing for inherited cardiac conditions and re-evaluation of pre-ACMG variants of uncertain significance. Ir J Med Sci (2024). https://doi.org/10.1007/s11845-024-03650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11845-024-03650-4

Keywords

Navigation