Skip to main content

Advertisement

Log in

Osteopetrosis in the pediatric patient: what the radiologist needs to know

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Osteopetrosis describes several types of rare sclerosing bone dysplasias of varying clinical and radiographic severity. The classic autosomal dominant subtype emerges most often in adolescence but can present from infancy through adulthood. The autosomal recessive osteopetrosis, or “malignant infantile osteopetrosis,” presents in infancy with a grimmer prognosis, though the autosomal dominant forms (often mislabeled as “benign”) actually can have life-threatening consequences as well. Often osteopetrosis is detected due to skeletal findings on radiographs performed to evaluate injury or as an incidental finding during evaluation for illness. Given the varied phenotypic severity and presentations at different ages, radiologists play an integral role in the care of these patients both in diagnosis and in clinical evaluation and monitoring. A deeper understanding of the underlying genetic basis of the disease can aid in the radiologist in diagnosis and in anticipation of unique complications. An overview of current clinical management is also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Albers-Schonberg HE (1904) X-ray images of rare bone disease [Rontgenbilder einer seltenen Knockenerkrankung]. Münchener Medizinische Wochenschrift 51:365–368

    Google Scholar 

  2. Karshner RG (1926) Osteopetrosis. Am J Roentgenol 16:405–419

    Google Scholar 

  3. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Reviews Endocrinol 9:522–536

    Article  CAS  Google Scholar 

  4. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, Nishimura G, Robertson S, Sangiorgi L, Savarirayan R, Sillence D, Superti-Furga A, Unger S, Warman ML (2019) Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet 179:2393–2419

    Article  PubMed  Google Scholar 

  5. Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13:285–292

    Article  CAS  PubMed  Google Scholar 

  6. Moreira CA, Dempster DW, Baron R (2019) Anatomy and ultrastructure of bone – histogenesis, growth and remodeling. In: Feingold KR (ed) Endotext. MDText.com, Inc., South Dartmouth (MA)

    Google Scholar 

  7. Stauber T, Wartosch L, Vishnolia S, Schulz A, Kornak U (2023) CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. Bone 168:116639

    Article  CAS  PubMed  Google Scholar 

  8. Pillai NR, Aggarwal A, Orchard P (2022) Phenotype-autosomal recessive osteopetrosis. Bone 165:116577

    Article  CAS  PubMed  Google Scholar 

  9. Waguespack SG, Hui SL, DiMeglio LA, Econs MJ (2007) Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metabolism 92:771–778

    Article  CAS  Google Scholar 

  10. Polgreen LE, Imel EA, Econs MJ (2023) Autosomal dominant osteopetrosis. Bone 170:116723

    Article  CAS  PubMed  Google Scholar 

  11. Bollerslev J, Andersen PE Jr. (1988) Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 9:7–13

    Article  CAS  PubMed  Google Scholar 

  12. Jodeh W, Katz A, Hart M, Niziolek P, Alam I, Ing S, Polgreen LE, Imel EA, Econs MJ (2024) Autosomal dominant osteopetrosis (ADO) caused by a missense variant in the TCIRG1 gene. J Clin Endocrinol Metabol. Advanced online publication

  13. Keats TE, Anderson MW (2012) Atlas of normal roentgen variants that may simulate disease. Elsevier, Philadelphia, p 189

    Google Scholar 

  14. Williams HJ, Davies AM, Chapman S (2004) Bone within a bone. Clin Radiol 59:132–144

    Article  CAS  PubMed  Google Scholar 

  15. Grodum E, Gram J, Brixen K, Bollerslev J (1995) Autosomal dominant osteopetrosis: bone mineral measurements of the entire skeleton of adults in two different subtypes. Bone 16:431–434

    CAS  PubMed  Google Scholar 

  16. Stark Z, Savarirayan R (2009) Osteopetrosis. Orphanet J Rare Dis 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Loria-Cortes R, Quesada-Calvo E, Cordero-Chaverri C (1977) Osteopetrosis in children: a report of 26 cases. J Pediatr 91:43–47

    Article  CAS  PubMed  Google Scholar 

  18. Spinnato P, Pedrini E, Petrera MR, Zarantonello P, Trisolino G, Sangiorgi L, Carpezano M, Crombe A, Tetta C (2022) Spectrum of Skeletal Imaging Features in Osteopetrosis: inheritance pattern and Radiological associations. Genes 13:1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu CC, Econs MJ, DiMeglio LA, Insogna KL, Levine MA, Orchard PJ, Miller WP, Petryk A, Rush ET, Shoback DM, Ward LM, Polgreen LE (2017) Diagnosis and management of osteopetrosis: consensus guidelines from the osteopetrosis working group. J Clin Endocrinol Metabolism 102:3111–3123

    Article  Google Scholar 

  20. Ladd LM, Imel EA, Niziolek PJ, Liu Z, Warden SJ, Liang Y, Econs MJ (2021) Radiographic imaging, densitometry and disease severity in autosomal dominant osteopetrosis type 2. Skeletal Radiol 50:903–913

    Article  PubMed  Google Scholar 

  21. Walia H, Jain R, Nirwan R, Bansal RK, Gupta GN (2013) Osteopetrosis: trephine biopsy an essential tool. Int J Students Res 3:45–47

    Article  Google Scholar 

  22. Rauch F (2005) Bone growth in length and width: the Yin and Yang of bone stability. J Musculoskelet Neuronal Interact 5:194–201

    CAS  PubMed  Google Scholar 

  23. Calder AD, Arulkumaran S, D’Arco F (2022) Imaging in osteopetrosis. Bone 165:116560

    Article  PubMed  Google Scholar 

  24. Chu K, Snyder R, Econs MJ (2006) Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J Bone Miner Res 21:1089–1097

    Article  CAS  PubMed  Google Scholar 

  25. Whyte MP (2005) Misinterpretation of osteodensitometry with high bone density: BMD Z > or = + 2.5 is not normal. J Clin Densitometry 8:1–6

    Article  Google Scholar 

  26. Arruda M, Coelho MCA, Moraes AB, de Paula Paranhos-Neto F, Madeira M, Farias MLF, Neto LV (2016) Bone Mineral density and microarchitecture in patients with autosomal dominant osteopetrosis: a report of two cases. J Bone Miner Res 31:657–662

    Article  PubMed  Google Scholar 

  27. Bollerslev J, Grontved A, Andersen PE Jr (1988) Autosomal dominant osteopetrosis: an otoneurological investigation of the two radiological types. Laryngoscope 98:411–413

    Article  CAS  PubMed  Google Scholar 

  28. Al-Tamimi YZ, Tyagi AK, Chumas PD, Crimmins DW (2008) Patients with autosomal-recessive osteopetrosis presenting with hydrocephalus and hindbrain posterior fossa crowding. J Neurosurgery: Pediatr 1:103–106

    Google Scholar 

  29. Dozier TS, Duncan IM, Klein AJ, Lambert PR, Key J, Lyndon L (2005) Otologic manifestations of malignant osteopetrosis. Otology Neurotology 26:762–766

    Article  PubMed  Google Scholar 

  30. Akdulum I, Gurun E, Tiken R, Aydemir AB, Boyunaga OL (2021) Optic canal diameters according to age in the pediatric population. J Pediatr Ophthalmol Strabismus 58:319–323

    Article  PubMed  Google Scholar 

  31. Capo V, Abinun M, Villa A (2022) Osteoclast rich osteopetrosis due to defects in the TCIRG1 gene. Bone 165:116519

    Article  CAS  PubMed  Google Scholar 

  32. Steward CG (2003) Neurological aspects of osteopetrosis. Neuropathol Appl Neurobiol 29:87–97

    Article  CAS  PubMed  Google Scholar 

  33. Key J, Lyndon L, Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332:1594–1599

    Article  PubMed  Google Scholar 

  34. Nguyen A, Miller WP, Gupta A, Lund TC, Schiferl D, Lam LSK, Arzumanyan Z, Orchard PJ, Polgreen LE (2022) Open-label pilot study of interferon gamma–1b in patients with non-infantile osteopetrosis. JBMR Plus 6:e10597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Imel EA, Liu Z, Acton D, Coffman M, Gebregziabher N, Tong Y, Econs MJ (2019) Interferon gamma-1b does not increase markers of bone resorption in autosomal dominant osteopetrosis. J Bone Miner Res 34:1436–1445

    Article  CAS  PubMed  Google Scholar 

  36. Alam I, Gray AK, Acton D, Gerard-O’Riley RL, Reilly AM, Econs MJ (2015) Interferon gamma, but not calcitriol improves the osteopetrotic phenotypes in ADO2 mice. J Bone Miner Res 30:2005–2013

    Article  CAS  PubMed  Google Scholar 

  37. Hashemi Taheri AP, Radmard AR, Kooraki S, Behfar M, Pak N, Hamidieh AA, Ghavamzadeh A (2015) Radiologic resolution of malignant infantile osteopetrosis skeletal changes following hematopoietic stem cell transplantation. Pediatr Blood Cancer 62:1645–1649

    Article  PubMed  Google Scholar 

  38. Shapiro G, Fishleder J, Stepensky P, Simanovsky N, Goldman V, Lamdan R (2020) Skeletal changes after hematopoietic stem cell transplantation in osteopetrosis. J Bone Miner Res 35:1645–1651

    Article  CAS  PubMed  Google Scholar 

  39. Orchard P, Fasth AL, Le Rademacher J, He W, Boelens JJ, Horwitz EM, Al-Seraihy A, Ayas M, Bonfim CM, Boulad F, Lund T, Buchbinder DK, Kapoor N, O’Brien TA, Perez MAD, Veys PA, Eapen M (2015) Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood 126:270–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maurizi A (2022) Experimental therapies for osteopetrosis. Bone 165:116567

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We would like to acknowledge funding under NIAMS/NIH R01AR077869 and R01AR084202.

Author information

Authors and Affiliations

Authors

Contributions

MNM drafted the initial manuscript and collected imaging examples.

EAI provided clinical expertise in the drafting of the manuscript.

MFA conceived the manuscript idea and supervised its drafting and revisions.

All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Morgan N. McLuckey.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLuckey, M.N., Imel, E.A. & Forbes-Amrhein, M.M. Osteopetrosis in the pediatric patient: what the radiologist needs to know. Pediatr Radiol (2024). https://doi.org/10.1007/s00247-024-05899-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00247-024-05899-4

Keywords

Navigation