Skip to main content

Advertisement

Log in

How host species and body part determine the microbial communities of five ambrosia beetle species

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The ambrosia beetles are farming insects that feed mainly on their cultivated fungi, which in some occasions are pathogens from forest and fruit trees. We used a culture-independent approach based on 16S and 18S rRNA gene metabarcoding analysis to investigate the diversity and composition of the bacterial and fungal communities associated with five ambrosia beetle species: four species native to America (Monarthrum dimidiatum, Dryocoetoides capucinus, Euwallacea discretus, Corthylus consimilis) and an introduced species (Xylosandrus morigerus). For the bacterial community, the beetle species hosted a broad diversity with 1,579 amplicon sequence variants (ASVs) and 66 genera, while for the fungal community they hosted 288 ASVs and 39 genera. Some microbial groups dominated the community within a host species or a body part (Wolbachia in the head-thorax of E. discretus; Ambrosiella in the head-thorax and abdomen of X. morigerus). The taxonomic composition and structure of the microbial communities appeared to differ between beetle species; this was supported by beta-diversity analysis, which indicated that bacterial and fungal communities were clustered mainly by host species. This study characterizes for the first time the microbial communities associated with unexplored ambrosia beetle species, as well as the factors that affect the composition and taxonomic diversity per se, contributing to the knowledge of the ambrosia beetle system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The 16S and 18S amplicon sequence data are available on NCBI (PRJNA1049028) and can be accessed at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1049028

References

  • Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb Ecol 56:460–466. https://doi.org/10.1007/s00248-008-9364-0

    Article  ADS  PubMed  Google Scholar 

  • Amir A, Daniel M, Navas-Molina J, Kopylova E, Morton J, Xu ZZ, Eric K, Thompson L, Hyde E, Gonzalez A, Knight R (2017) Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. Am Soc Microbiol 2:1–7

    Google Scholar 

  • Ángel-Restrepo M, Parra PP, Ochoa-Ascencio S, Fernández-Pavía S, Vázquez-Marrufo G, Equihua-Martínez A, Barrientos-Priego AF, Ploetz RC, Konkol JL, Saucedo-Carabez JR, Gazis R (2022) First look into the ambrosia beetle-fungus symbiosis present in commercial avocado orchards in Michoacán, Mexico. Environ Entomol. 2;51(2):385–396. https://doi.org/10.1093/ee/nvab142.

  • Araújo JPM, Li Y, Duong TA, Smith ME, Adams S, Hulcr J (2022) Four New Species of Harringtonia: Unravelling the Laurel Wilt Fungal Genus. J Fungi 8 8(6):613. https://doi.org/10.3390/jof8060613

  • Ayala-Silva T, Ledesma N (2014) Avocado History, Biodiversity and Production

  • Aylward FO, Suen G, Biedermann PHW, Adams AS, Scott JJ, Malfatti SA, del Rio T, Tringe SG, Poulsen M, Raffa KF, Klepzig KD, Currie CR (2014) Convergent bacterial microbiotas in the fungal agricultural systems of insects. MBio 5:e02077--14, /mbio/5/6/e02077--14.atom. https://doi.org/10.1128/mBio.02077-14

  • Bateman C, Huang YT, Simmons DR, Kasson MT, Stanley EL, Hulcr J (2017) Ambrosia beetle Premnobius cavipennis (Scolytinae: Ipini) carries highly divergent ascomycotan ambrosia fungus, Afroraffaelea ambrosiae gen. nov. et sp. nov. (Ophiostomatales). Fungal Ecol 25:41–49. https://doi.org/10.1016/j.funeco.2016.10.008

    Article  Google Scholar 

  • Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J (2016) Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) Are Spatially Segregated on the Insect Body. Environ Entomol 45:883–890. https://doi.org/10.1093/ee/nvw070

    Article  CAS  PubMed  Google Scholar 

  • Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 66(2):213–236

    Article  Google Scholar 

  • Beaver RA (1989) Insect–fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus Interactions. Academic, San Diego, pp 121–143

    Chapter  Google Scholar 

  • Benjamin RK, Blackwell M, Chapela IH, Humber RA, Jones KG, Klepzing KD, Lichtwardt RW, Malloch D, Noda H, R.A. R, Spatafora JW, Weir A (2004) INSECT- AND OTHER ARTHROPOD-ASSOCIATED FUNGI. In: Mueller GM, Foster MS, Bills GF (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Inc., pp 247–255

  • Bolyen E, Dillon M, Bokulich N, Abnet C, Al-Ghalith G, Alexander H, Alm E, Arumugam M, Asnicar F, Bai Y, Bisanz J, Bittinger K, Brejnrod A, Brislawn C, Brown T, Callahan B, Chase J, Cope E, Dorrestein P, Douglas G, Durall D, Duvallet C, Edwardson C, Ernst M, Estaki M, Fouquier J, Gauglitz J, Gibson D, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G, Janssen S, Jarmusch A, Jiang L, Kaehler B, Keefe C, Keim P, Kelley S, Knights D, Koester I, Kosciolek T, Kreps J, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B, McDonald D, McIver L, Melnik A, Metcalf J, Morgan S, Morton J, Navas-Molina J, Orchanian S, Pearson T, Peoples S, Petras D, Pruesse E, Rivers A, Robeson M, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Spear J, Swafford A, Thompson L, Torres P, Trinh P, Tripathi A, Turnbaugh P, Ul-Hasan S, Vargas F, Vogtmann E, Walters W, Wan Y, Wang M, Warren J, Weber K, Willis A, Zaneveld J, Zhang Y, Zhu Q, Knight R, Caporaso G (2018) QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr.https://doi.org/10.7287/peerj.preprints.27295

  • Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CAM, Schmitt M, Ślipiński SA, Smith ABT (2011) Family-group names in Coleoptera (Insecta). Zookeys 1–972. https://doi.org/10.3897/zookeys.88.807

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300. https://doi.org/10.1128/AEM.70.1.293-300.2004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambronero-Heinrichs JC, Battisti A, Biedermann PHW, Cavaletto G, Castro-Gutierrez V, Favaro L, Santoiemma G, Rassati D (2023) Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol Ecol 99:1–11. https://doi.org/10.1093/femsec/fiad144

    Article  CAS  Google Scholar 

  • Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645. https://doi.org/10.1111/j.1365-2311.2006.00829.x

    Article  Google Scholar 

  • Carreras-Villaseñor N, Rodríguez-Haas JB, Martínez-Rodríguez LA, Pérez-Lira AJ, Ibarra-Laclette E, Villafán E, Castillo-Díaz AP, Ibarra-Juárez LA, Carrillo-Hernández ED, Sánchez-Rangel D (2022) Characterization of two fusarium solani species complex isolates from the ambrosia beetle Xylosandrus morigerus. J Fungi 8. https://doi.org/10.3390/jof8030231

  • Carrillo D, Cruz LF, Kendra PE, Narvaez TI, Montgomery WS, Monterroso A, De Grave C, Cooperband MF (2016) Distribution, pest status and fungal associates of Euwallacea nr. fornicatus in Florida avocado groves. Insects 7:1–11. https://doi.org/10.3390/insects7040055

    Article  Google Scholar 

  • Carrillo D, Duncan RE, Peña JE (2012) Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Florida Entomol 95:573–579. https://doi.org/10.1653/024.095.0306

    Article  Google Scholar 

  • Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62. https://doi.org/10.1111/ppa.12073

    Article  Google Scholar 

  • Ceriani-Nakamurakare E, Mc Cargo P, Gonzalez-Audino P, Ramos S, Carmarán C (2020) New insights into fungal diversity associated with Megaplatypus mutatus: gut mycobiota. Symbiosis 81:127–137. https://doi.org/10.1007/s13199-020-00687-8

    Article  Google Scholar 

  • Chen H, Boutros PC (2011) VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12. https://doi.org/10.1186/1471-2105-12-35

  • Cruz LF, Menocal O, Mantilla J, Ibarra-Juarez LA, Carrillo D (2019) Xyleborus volvulus (Coleoptera: Curculionidae): Biology and fungal associates. Appl Environ Microbiol 85. https://doi.org/10.1128/AEM.01190-19

  • Daehler CC, Dudley N (2002) Impact of the black twig borer, an introduced insect pest, on Acacia koa in the Hawaiian Islands. Micronesia Suppl 6:35–53

    Google Scholar 

  • Darriba D, Taboada G, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions Between the Yeast Ogataea pini and Filamentous Fungi Associated with the Western Pine Beetle. Microb Ecol 61:626–634. https://doi.org/10.1007/s00248-010-9773-8

    Article  ADS  PubMed  Google Scholar 

  • Dreaden TJ, Davis JM, de Beer ZW, Ploetz RC, Soltis PS, Wingfield MJ, Smith JA (2014) Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–978. https://doi.org/10.1016/j.funbio.2014.09.001

    Article  PubMed  Google Scholar 

  • Foster ZSL, Sharpton TJ, Grunwald NJ (2017) Metacoder : An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol 13:1–15. https://doi.org/10.5281/zenodo.158228

    Article  Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE, Hanula JL, Eickwort JM, Miller DR (2008) A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States. Plant Dis 92:215–224. https://doi.org/10.1094/PDIS-92-2-0215

    Article  CAS  PubMed  Google Scholar 

  • Francke-Grosmann H (1956) Hautdrüsen als Träger der Pilzsymbiose bei Ambrosiakäfern. Z Morphol Okol Tiere 45:275–308

    Article  Google Scholar 

  • Freeman S, Sharon M, Dori-Bachash M, Maymon M, Belausov E, Maoz Y, Margalit O, Protasov A, Mendel Z (2016) Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis 68:115–128. https://doi.org/10.1007/s13199-015-0356-9

    Article  Google Scholar 

  • Freeman S, Sharon M, Maymon M, Mendel Z, Protasov A, Aoki T, Eskalen A, O’Donnell K (2013) Fusarium euwallaceae sp. nov.–a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia 105:1595–1606. https://doi.org/10.3852/13-066

    Article  CAS  PubMed  Google Scholar 

  • Fukuda TTH, Helfrich EJN, Mevers E, Melo WGP, van Arnam EB, Andes DR, Currie CR, Pupo MT, Clardy J (2021) Specialized metabolites reveal evolutionary history and geographic dispersion of a multilateral symbiosis. ACS Cent Sci 7:292–299. https://doi.org/10.1021/acscentsci.0c00978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk A (1965) the Symbiotic Fungi of Certain Ambrosia Beetles in British Columbia. Can J Bot 43:929–932. https://doi.org/10.1139/b65-103

    Article  Google Scholar 

  • Galko J, Dzurenko M, Ranger CM, Kulfan J, Kula E, Nikolov C, Zúbrik M, Zach P (2019) Distribution, habitat preference, and management of the invasive ambrosia beetle xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae) in European forests with an emphasis on the West Carpathians. Forests 10. https://doi.org/10.3390/f10010010

  • García-Avila CDJ, Trujillo-Arriaga FJ, López-Buenfil JA, González-Gómez R, Carrillo D, Cruz LF, Ruiz-Galván I, Quezada-Salinas A, Acevedo-Reyes N (2016) First Report of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Mexico. Florida Entomol 99:555–556. https://doi.org/10.1653/024.099.0335

    Article  Google Scholar 

  • García-Fraile P (2018) Roles of bacteria in the bark beetle holobiont – how do they shape this forest pest? Ann Appl Biol 172:111–125. https://doi.org/10.1111/aab.12406

    Article  Google Scholar 

  • Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234. https://doi.org/10.1111/j.1461-0248.2009.01416.x

    Article  PubMed  Google Scholar 

  • Grubbs KJ, Surup F, Biedermann PHW, McDonald BR, Klassen JL, Carlson CM, Clardy J, Currie CR (2020) Cycloheximide-Producing Streptomyces Associated With Xyleborinus saxesenii and Xyleborus affinis Fungus-Farming Ambrosia Beetles. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.562140

    Article  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci U S A 106:4742–4746. https://doi.org/10.1073/pnas.0812082106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  • Hughes MA, Smith JA, Ploetz RC, Kendra PE, Mayfield AE, Hanula JL, Hulcr J, Stelinski LL, Cameron S, Riggins JJ, Carrillo D, Rabaglia R, Eickwort J, Pernas T (2015) Recovery Plan for Laurel Wilt on Redbay and Other Forest Species Caused by Raffaelea lauricola and Disseminated by Xyleborus glabratus. Plant Heal Prog 16:173–210. https://doi.org/10.1094/PHP-RP-15-0017

    Article  Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc R Soc B Biol Sci 278:2866–2873. https://doi.org/10.1098/rspb.2011.1130

    Article  Google Scholar 

  • Hulcr J, Mann R, Stelinski LL (2011) The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. J Chem Ecol 37:1374–1377. https://doi.org/10.1007/s10886-011-0046-x

    Article  CAS  PubMed  Google Scholar 

  • Hulcr J, Rountree NR, Diamond SE, Stelinski LL, Fierer N, Dunn RR (2012) Mycangia of ambrosia beetles host communities of bacteria. Microb Ecol 64:784–793. https://doi.org/10.1007/s00248-012-0055-5

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hulcr J, Stelinski LL (2017) The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Annu Rev Entomol 62:285–303. https://doi.org/10.1146/annurev-ento-031616-035105

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Juarez L, Desgarennes D, Vázquez-Rosas-Landa M, Villafan E, Alonso-Sánchez A, Ferrera-Rodríguez O, Moya A, Carrillo D, Cruz L, Carrión G, López-Buenfil A, García-Avila C, Ibarra-Laclette E, Lamelas A (2018) Impact of rearing conditions on the ambrosia beetle’s microbiome. Life 8:63. https://doi.org/10.3390/life8040063

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibarra-Juarez LA, Burton MAJ, Biedermann PHW, Cruz L, Desgarennes D, Ibarra-Laclette E, Latorre A, Alonso-Sánchez A, Villafan E, Hanako-Rosas G, López L, Vázquez-Rosas-Landa M, Carrion G, Carrillo D, Moya A, Lamelas A (2020) Evidence for succession and putative metabolic roles of fungi and bacteria in the farming mutualism of the ambrosia beetle Xyleborus affinis. mSystems 5. https://doi.org/10.1128/msystems.00541-20

  • Ibarra-Laclette E, Sánchez-Rangel D, Hernández-Domínguez E, Pérez-Torres CA, Ortiz-Castro R, Villafán E, Alonso-Sánchez A, Rodríguez-Haas B, López-Buenfil A, García-Avila C, Ramírez-Pool JA (2017) Draft genome sequence of the phytopathogenic fungus Fusarium euwallaceae, the causal agent of Fusarium dieback. Genome Announc 5:349–351. https://doi.org/10.1128/genomeA.00881-17

    Article  Google Scholar 

  • Jiang ZR, Masuya H, Kajimura H (2021) Novel symbiotic association between Euwallacea Ambrosia Beetle and Fusarium Fungus on Fig Trees in Japan. Front Microbiol 12:1–10. https://doi.org/10.3389/fmicb.2021.725210

    Article  Google Scholar 

  • Jiang ZR, Masuya H, Kajimura H (2022) Fungal flora in adult females of the rearing population of ambrosia beetle Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae): Does It Differ from the Wild Population? Diversity 14. https://doi.org/10.3390/d14070535

  • Kajtoch Ł, Kotásková N (2018) Current state of knowledge on Wolbachia infection among Coleoptera: A systematic review. PeerJ 2018:1–31. https://doi.org/10.7717/peerj.4471

    Article  Google Scholar 

  • Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A (2019) Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J 13:1788–1800. https://doi.org/10.1038/s41396-019-0390-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki Y, Schuler H, Stauffer C, Lakatos F, Kajimura H (2016) Wolbachia endosymbionts in haplodiploid and diploid scolytine beetles (Coleoptera: Curculionidae: Scolytinae). Environ Microbiol Rep 8:680–688. https://doi.org/10.1111/1758-2229.12425

    Article  PubMed  Google Scholar 

  • Kikuchi Y (2018) Detoxifying symbiosis: Microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 35:434–454

    Article  PubMed  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  • KnÍŽek M, Beaver R (2007) Taxonomy and Systematics of Bark and Ambrosia Beetles.In: Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF (eds) Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2241-8_5

  • Kolasa M, Ścibior R, Mazur MA, Kubisz D, Dudek K, Kajtoch Ł (2019) How hosts taxonomy, trophy, and endosymbionts shape microbiome diversity in beetles. Microb Ecol.https://doi.org/10.1007/s00248-019-01358-y

  • Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138. https://doi.org/10.1038/ismej.2014.115

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res 47:256–259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  Google Scholar 

  • Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of intersecting sets. IEEE Trans vis Comput Graph 20:1983–1992. https://doi.org/10.1109/TVCG.2014.2346248

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorea-Hernández FG (2002) La familia Lauraceae en el sur de México: Diversidad, distribución y estado de conservación. Bot Sci 70:59–70. https://doi.org/10.17129/botsci.1663

  • Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J, Stouthamer R, Eskalen A (2016) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.-two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329. https://doi.org/10.3852/15-063

    Article  PubMed  Google Scholar 

  • Masuya H (2007) Note on the dieback of Cornus florida caused by Xylosandrus compactus. Bull For For Prod Res Institute, Ibaraki

  • Mayers CG, Bateman CC, Harrington TC (2018) New Meredithiella species from mycangia of Corthylus ambrosia beetles suggest genus-level coadaptation but not species-level coevolution. Mycologia 110:63–78. https://doi.org/10.1080/00275514.2017.1400353

    Article  PubMed  Google Scholar 

  • Mayers CG, Harrington TC, Biedermann PHW (2022) Mycangia Define the Diverse Ambrosia Beetle-Fungus Symbioses. In: Schultz T, Peregrine P, Gawne R (eds) The Convergent Evolution of Agriculture in Humans and Insects. MIT Press, Cambridge

    Google Scholar 

  • Miller KE, Inward DJ, Gomez-Rodriguez C, Baselga A, Vogler AP (2019) Predicting the unpredictable: How host specific is the mycobiota of bark and ambrosia beetles? Fungal Ecol 42:100854. https://doi.org/10.1016/j.funeco.2019.07.008

    Article  Google Scholar 

  • O’Donnell K, Libeskind-Hadas R, Hulcr J, Bateman C, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carrillo D, Campbell A, Duncan RE, Liyanage PNH, Eskalen A, Lynch SC, Geiser DM, Freeman S, Mendel Z, Sharon M, Aoki T, Cossé AA, Rooney AP (2016) Invasive Asian FusariumEuwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry. Phytoparasitica 44:435–442. https://doi.org/10.1007/s12600-016-0543-0

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: Community Ecology Package. R Package Version 2.5–1. https://CRANR-project.org/package=vegan

  • Ploetz RC, Konkol JL, Narvaez T, Duncan RE, Saucedo RJ, Campbell A, Mantilla J, Carrillo D, Kendra PE (2017) Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of Ambrosia Beetle in Florida. USA J Econ Entomol 110:347–354. https://doi.org/10.1093/jee/tow292

    Article  PubMed  Google Scholar 

  • Rassati D, Marini L, Malacrinò A (2019) Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ 7:e8103. https://doi.org/10.7717/peerj.8103

    Article  PubMed  PubMed Central  Google Scholar 

  • Rugman-Jones PF, Hoddle MS, Mound LA, Stouthamer R (2006) Molecular Identification Key for Pest Species of Scirtothrips (Thysanoptera: Thripidae). J Econ Entomol 99:7

    Article  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HC (2005) Aphid Protected from Pathogen. Science (80- ) 310:2005

  • Scott JJ, Oh D-C, Yuceer C, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322(5898):63–63. https://doi.org/10.1126/science.1160423.Bacterial

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Six DL (2013) The Bark Beetle Holobiont: Why Microbes Matter. J Chem Ecol 39:989–1002. https://doi.org/10.1007/s10886-013-0318-8

    Article  CAS  PubMed  Google Scholar 

  • Six DL (2012) Ecological and Evolutionary Determinants of Bark Beetle —Fungus Symbioses. Insects 3:339–366. https://doi.org/10.3390/insects3010339

    Article  PubMed  PubMed Central  Google Scholar 

  • Six DL (2003) Bark Beetle-Fungus Symbioses. Insect Symbiosis Contemp Top Entomol Ser

  • Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J (2019) A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proc R Soc B Biol Sci 286:20182127. https://doi.org/10.1098/rspb.2018.2127

    Article  CAS  Google Scholar 

  • Suárez-Moo P, Cruz-Rosales M, Ibarra-Laclette E, Desgarennes D, Huerta C, Lamelas A (2020) Diversity and Composition of the Gut Microbiota in the Developmental Stages of the Dung Beetle Copris incertus Say (Coleoptera, Scarabaeidae). Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.01698

    Article  Google Scholar 

  • Team Rs (2015) RStudio: Integrated Development for R

  • Therrien J, Mason CJ, Cale JA, Adams A, Aukema BH, Currie CR, Raffa KF, Erbilgin N (2015) Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia 179:467–485. https://doi.org/10.1007/s00442-015-3356-9

    Article  ADS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science (80- ) 330:1102–1104. https://doi.org/10.1126/science.1195463

  • Weiss B, Aksoy S (2011) Microbiome influences on insect host vector competence. Trends Parasitol 27:514–522. https://doi.org/10.1016/j.pt.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood SL (1986) A reclassification of the genera of Scolytidae (Coleoptera), 10th ed

  • Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph, 6th ed. Great Basin Naturalist Memoirs

  • Yuceer C, Hsu CY, Erbilgin N, Klepzig KD (2011) Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae, Scolytinae): complex morphology for complex interactions. Acta Zool 92:216–224. https://doi.org/10.1111/j.1463-6395.2011.00500.x

    Article  Google Scholar 

  • Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Do NY, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. https://doi.org/10.1128/AEM.01226-14

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ann Grant and Sean Rovito for her helpful discussions and suggestions. We also thank Guadalupe Hernández Cervantes for the processing of the biological samples and T. H. Atkinson for the photographs of the beetle specimens. We are grateful for the support of Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT) for a postdoctoral Fellowship to PSM (362331) and the Fondo Institucional de Fomento Regional para el Desarrollo Científico Tecnológico y de Innovación (FORDECyT), Grant No. 292399

Funding

This work was supported by Fondo Institucional de Fomento Regional para el Desarrollo Científico Tecnológico y de Innovación (FORDECyT) from Consejo Nacional de Ciencia y Tecnología (CONACyT), grant No. 292399.

Author information

Authors and Affiliations

Authors

Contributions

Araceli Lamelas and Arturo Ibarra Juarez designed the research. Arturo Ibarra-Juarez and Paulette Calleros-González contributed to experimental work. Paulette Calleros-González and Pablo Suárez-Moo performed the data analysis and wrote the manuscript. Pablo Suárez-Moo and Araceli Lamelas revised the manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Araceli Lamelas or Pablo Suárez-Moo.

Ethics declarations

Ethics approval

No ethics approval was required for this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1309 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calleros-González, P., Ibarra-Juarez, A., Lamelas, A. et al. How host species and body part determine the microbial communities of five ambrosia beetle species. Int Microbiol (2024). https://doi.org/10.1007/s10123-024-00502-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-024-00502-0

Keywords

Navigation