Skip to main content
Log in

Biochar promoted halophyte growth and enhanced soil carbon stock in a coastal salt-affected soil

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Biochar, as a stable carbon-rich material, has received concentrated attention in soil quality improvement, especially in soil carbon sequestration. This study aimed to find out the effects of biochar application on carbon stock in the whole salt-affected soil ecosystems.

Methods

This study was conducted in a heavy salt-affected soil, aiming at investigating biochar application effects on salt-affected soil organic carbon (SOC), soil inorganic carbon (SIC), as well as plant (Tamarisk chinensis) biomass carbon stocks.

Results

After 4 years of biochar application of 30, 60, and 90 t ha−1, the results showed that biochar increased soil total organic carbon (STOC) stock by 54.78, 160.44, and 198.33%, and biochar increased soil total inorganic carbon (STIC) stock by 13.85, 11.04, and 16.03%, respectively. Further, it is calculated that biochar increased native SOC (extra SOC excluding biochar carbon) by 7.63, 66.15, and 56.90% and SIC by 13.55, 10.44, and 15.12%, respectively. In addition, biochar application accelerated Tamarisk chinensis growth by 10.03, 23.54, and 11.28%, respectively. Combining all the SOC, SIC, and plant-derived carbon, it is concluded that biochar application enlarged salt-affected soil-vegetation ecosystem carbon stock by 23.36, 47.80, and 58.10%, respectively.

Conclusion

These results indicated that applying biochar in salt-affected soil can enhance salt-affected soil-vegetation ecosystem carbon stocks. The mechanisms behind this phenomenon may be that biochar improves soil water content and bulk density, which promotes Tamarisk chinensis growth. Biochar has a good potential to improve salt-affected soil quality and mitigate climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available upon request to the corresponding author (Xinliang Dong).

References

  • Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170

    Article  Google Scholar 

  • Alcantara V, Don A, Vesterdal L, Well R, Nieder R (2017) Stability of buried carbon in deep-ploughed forest and cropland soils - implications for carbon stocks. Sci Rep-UK 7:5511

    Article  ADS  Google Scholar 

  • Amini S, Ghadiri H, Chen CR, Marschner P (2016) Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J Soil Sediment 16:939–953

    Article  CAS  Google Scholar 

  • Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Borno ML, Muller-Stover DS, Liu FL (2018) Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci Total Environ 627:963–974

    Article  ADS  PubMed  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  ADS  CAS  Google Scholar 

  • Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Ryu HY, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ (2013) How does climate change cause extinction? P Roy Soc B-Biol Sciences 280:21890–21890

    Google Scholar 

  • Chaganti VN, Crohn DM, Simunek J (2015) Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agr Water Manage 158:255–265

    Article  Google Scholar 

  • Cui LQ, Liu YM, Yan JL, Hina K, Hussain Q, Qiu TJ, Zhu JY (2022) Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. Ecol Eng 179:106594–106594

    Article  Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity. Sci Total Environ 573:727–739

    Article  ADS  CAS  PubMed  Google Scholar 

  • Deane MM, Grams SE, Barasha M, Antoninka AJ, Johnson NC (2022) Organic and inorganic soil carbon in a semi-arid rangeland is primarily related to abiotic factors and not livestock grazing. Geoderma 419:115844

    Article  ADS  Google Scholar 

  • Dong XL, Li MZ, Lin QM, Li GT, Zhao XR (2018) Soil Na+ concentration controls salt-affected soil organic matter components in Hetao region China. J Soil Sediment 19:1120–1129

    Article  Google Scholar 

  • Dong XL, Singh BP, Li GT, Lin QM, Zhao XR (2019) Biochar increased field soil inorganic carbon content five years after application. Soil till Res 186:36–41

    Article  Google Scholar 

  • Feng YF, Sun HJ, Xue LH, Liu Y, Gao Q, Lu KP, Yang L (2017) Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 168:1277–1284

    Article  ADS  CAS  PubMed  Google Scholar 

  • Feng JG, He KY, Zhang QF, Han MG, Zhu B (2022) Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biol 28:3426–3440

    Article  CAS  Google Scholar 

  • Ferdush J, Paul V (2021) A review on the possible factors influencing soil inorganic carbon under elevated CO2. CATENA 204:105434

    Article  CAS  Google Scholar 

  • Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. P Natl Acad Sci USA 102:11201–11206

    Article  ADS  CAS  Google Scholar 

  • Glab T, Palmowska J, Zaleski T, Gondek K (2016) Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281:11–20

    Article  ADS  CAS  Google Scholar 

  • Guo K, Liu XJ (2019) Effect of initial soil water content and bulk density on the infiltration and desalination of melting saline ice water in coastal saline soil. Eur J Soil Sci 70:1249–1266

    Article  CAS  Google Scholar 

  • He K, He G, Wang CP, Zhang HP, Xu Y, Wang SM, Kong YZ, Zhou GK, Hu RB (2020) Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl Soil Ecol 155:3674–3674

    Article  Google Scholar 

  • Heath LS, Kimble JM, Birdsey RA, Lal R (2002) The potential of US grazing lands to sequester carbon and mitigate the greenhouse effect. Geoderma 107:148–149

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res 48:577–585

    Article  CAS  Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manage 33:528–544

    Article  PubMed  Google Scholar 

  • Lal R (2018) Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biol 24:3285–3301

    Article  ADS  Google Scholar 

  • Landi A, Mermut AR, Anderson DW (2003) Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 117:143–156

    Article  ADS  CAS  Google Scholar 

  • Lashari MS, Ye YX, Ji HS, Li LQ, Kibue GW, Lu HF, Zheng JF, Pan GX (2015) Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agr 95:1321–1327

    Article  CAS  Google Scholar 

  • Lei X, Shen YT, Zhao JN, Huang JJ, Wang H, Yu Y, Xiao CW (2023) Root exudates mediate the processes of soil organic carbon input and efflux. Plants-Basel 12:630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SL, Wang S, Fan MC, Wu Y, Shangguan ZP (2020) Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil till Res 196:104437

    Article  Google Scholar 

  • Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Wang JT, Singh BK (2017) Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol Biochem 107:208–217

    Article  CAS  Google Scholar 

  • Liu Z, Sun YF, Zhang YQ, Qin SG, Sun YQ, Mao HN, Miao L (2020) Desert soil sequesters atmospheric CO2 by microbial mineral formation. Geoderma 361:114104

    Article  ADS  CAS  Google Scholar 

  • Ma J, Wang ZY, Stevenson BA, Zheng XJ, Li Y (2013) An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Sci Rep UK 3:2025

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  ADS  CAS  PubMed  Google Scholar 

  • Monger HC, Kraimer RA, Khresat S, Cole DR, Wang XJ, Wang JP (2015) Sequestration of inorganic carbon in soil and groundwater. Geology 43:375–378

    Article  ADS  CAS  Google Scholar 

  • Mukherjee A, Lai R, Zimmerman AR (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36

    Article  ADS  CAS  PubMed  Google Scholar 

  • Munda S, Bhaduri D, Mohanty S, Chatterjee D, Tripathi R, Shahid M, Kumar U, Bhattacharyya P, Kumar A, Adak T, Jangde HK, Nayak AK (2018) Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenerg 115:1–9

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1975) A rapid and accurate procedure for estimation of organic carbon in soils. P Natl Acad Sci USA 84:456–462

    Google Scholar 

  • Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, Bolan N, Wang HL, Ok YS (2019) Response of microbial communities to biochar-amended soils: a critical review. Biochar 1:3–22

    Article  ADS  Google Scholar 

  • Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009-U82

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rawlins BG, Henrys P, Breward N, Robinson DA, Keith AM, Garcia-Bajo M (2011) The importance of inorganic carbon in soil carbon databases and stock estimates: a case study from England. Soil Use Manage 27:312–320

    Article  Google Scholar 

  • Richter JA, Erban A, Kopka J, Zoerb C (2015) Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci 233:107–115

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Angin I, Kiziloglu FM (2008) Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash. Soil till Res 99:254–260

    Article  Google Scholar 

  • Saifullah DS, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shi SW, Zhang QZ, Lou YL, Du ZL, Wang Q, Hu N, Wang YD, Gunina A, Song JQ (2020) Soil organic and inorganic carbon sequestration by consecutive biochar application: Results from a decade field experiment. Soil Use Manage 37:95–103

    Article  Google Scholar 

  • Six J, Paustian K, Elliott ET, Combrink C (2000) Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64:681–689

    Article  CAS  Google Scholar 

  • Smebye A, Ailing V, Vogt RD, Gadmar TC, Mulder J, Cornelissen G, Hale SE (2016) Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 142:100–105

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sposito G, Mattigod SV (1977) Chemical foundation of sodium adsorption ratio. Soil Sci Soc Am J 41:323–329

    Article  CAS  Google Scholar 

  • Stevenson BA, Verburg PSJ (2006) Effluxed CO2-C-13 from sterilized and unsterilized treatments of a calcareous soil. Soil Biol Biochem 38:1727–1733

    Article  CAS  Google Scholar 

  • Sun JN, Yang RY, Li WX, Pan YH, Zheng MZ, Zhang ZH (2018) Effect of biochar amendment on water infiltration in a coastal saline soil. J Soil Sediment 18:3271–3279

    Article  CAS  Google Scholar 

  • Sun YP, Yang JS, Yao RJ, Chen XB, Wang XP (2020) Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci Rep-UK 10:8946

    Article  ADS  CAS  Google Scholar 

  • Tan WF, Zhang R, Cao H, Huang CQ, Yang QK, Wang MK, Koopal LK (2014) Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. CATENA 121:22–30

    Article  CAS  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of Organic Amendment as a Strategy for Saline Soil Remediation: Influence on the Physical, Chemical and Biological Properties of Soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Tsypin M, Macpherson GL (2012) The effect of precipitation events on inorganic carbon in soil and shallow groundwater, Konza Prairie LTER Site, NE Kansas, USA. Appl Geochem 27:2356–2369

    Article  ADS  CAS  Google Scholar 

  • Van den Berg LJL, Shotbolt L, Ashmore MR (2012) Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality. Sci Total Environ 427:269–276

    Article  ADS  PubMed  Google Scholar 

  • Vithanage M, Rajapaksha AU, Zhang M, Thiele-Bruhn S, Lee SS, Ok YS (2015) Acid-activated biochar increased sulfamethazine retention in soils. Environ Sci Pollut R 22:2175–2186

    Article  CAS  Google Scholar 

  • Wang T, Camps-Arbestain M, Hedley M, Singh BP, Calvelo-Pereira R, Wang CY (2014) Determination of carbonate-C in biochars. Soil Res 52:495–504

    Article  CAS  Google Scholar 

  • Wang XJ, Wang JP, Xu MG, Zhang WJ, Fan TL, Zhang J (2015) Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon. Sci Rep-UK 5:11439

    Article  ADS  CAS  Google Scholar 

  • Wang DD, Yan YC, Li XH, Shi XZ, Zhang ZQ, Weindorf DC, Wang HJ, Xu SX (2017) Influence of climate on soil organic carbon in Chinese paddy soils. Chinese Geogr Sci 27:351–361

    Article  Google Scholar 

  • Wang Y, Joseph S, Wang X, Weng ZH, Mitchell DRG, Nancarrow M, Taherymoosavi S, Munroe P, Li GT, Lin QM, Chen Q, Flury M, Cowie A, Husson O, Van ZL, Kuzyakov Y, Lehmann J, Li BG, Shang JY (2023) Inducing inorganic carbon accrual in subsoil through biochar application on calcareous topsoil. Environ Sci Technol 57:1837–1847

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wei W, Zhang S, Wu L, Cui D, Ding X (2020) Biochar and phosphorus fertilization improved soil quality and inorganic phosphorus fractions in saline-alkaline soils. Arch Agron Soil Sci 67:1177–1190

    Article  Google Scholar 

  • Wohlfahrt G, Fenstermaker LF, Arnone JA (2008) Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biol 14:1475–1487

    Article  ADS  Google Scholar 

  • Xiang YZ, Liu Y, Niazi NK, Bolan N, Zhao L, Zhang SY, Xue JM, Yao B, Li Y (2023) Biochar addition increased soil bacterial diversity and richness: large-scale evidence of field experiments. Sci Total Environ 893:164961

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xiao L, Yuan GD, Feng LR, Bi DX, Wei J (2020) Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agr Ecosyst Environ 303:107124

    Article  CAS  Google Scholar 

  • Xie JX, Li Y, Zhai CX, Li CH, Lan ZD (2009) CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ Geol 56:953–961

    Article  ADS  CAS  Google Scholar 

  • Xu YR, Zhang WJ, Feng ZW, Zhang JL (2003) Caloric values, elemental contents and correlations between them of some plants on sea-beach salinity soil in Tianjin, China. Acta Ecol Sin 23:450–455

    Google Scholar 

  • Xu TT, Zhang MN, Ding SW, Liu B, Chang Q, Zhao X, Wang Y, Wang JY, Wang L (2021) Grassland degradation with saline-alkaline reduces more soil inorganic carbon than soil organic carbon storage. Ecol Indic 131:108194

    Article  CAS  Google Scholar 

  • Yang YH, Fang JY, Ji CJ, Ma WH, Mohammat A, Wang SF, Wang SP, Datta A, Robinson D, Smith P (2012) Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s–2000s. Global Change Biol 18:3672–3680

    Article  ADS  Google Scholar 

  • Yang F, Huang JP, He Q, Zheng XQ, Zhou CL, Pan HL, Huo W, Yu HP, Liu XY, Meng L, Han DL, Ali M, Yang XH (2020) Impact of differences in soil temperature on the desertcarbon sink. Geoderma 379:114636

    Article  ADS  CAS  Google Scholar 

  • Yang PP, Shu Q, Liu Q, Hu Z, Zhang SJ, Ma YY (2021) Distribution and factors influencing organic and inorganic carbon in surface sediments of tidal flats in northern Jiangsu. China Ecol Indic 126:107633

    Article  CAS  Google Scholar 

  • You MY, Han XZ, Hu N, Du SL, Doane TA, Li LJ (2020) Profile storage and vertical distribution (0–150 cm) of soil inorganic carbon in croplands in northeast China. CATENA 185:104302

    Article  CAS  Google Scholar 

  • Yu HW, Zou WX, Chen JJ, Chen H, Yu ZB, Huang J, Tang HR, Wei XY, Gao B (2019) Biochar amendment improves crop production in problem soils: A review. J Environ Manage 232:8–21

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhou WJ, Wang YQ, Cheng P, Hou YY, Xiong XH, Du H, Yang L, Wang Y (2020) Effects of land use and cultivation time on soil organic and inorganic carbon storage in deep soils. J Geogr Sci 30:921–934

    Article  Google Scholar 

  • Zamanian K, Zarebanadkouki M, Kuzyakov Y (2018) Nitrogen fertilization raises CO2 efflux from inorganic carbon: a global assessment. Global Change Biol 24:2810–2817

    Article  ADS  Google Scholar 

  • Zhang HX, Irving LJ, McGill C, Matthew C, Zhou DW, Kemp P (2010) The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot-London 106:1027–1035

    Article  CAS  Google Scholar 

  • Zhang A, Bian R, Pan GX, Cui LQ, Hussain Q, Li LQ, Zheng JW, Zhang XH, Han XJ, Yu XY (2012) Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160

    Article  Google Scholar 

  • Zhao W, Zhou Q, Tian ZZ, Cui YT, Liang Y, Wang HY (2020) Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci Total Environ 722:137428

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

There is great appreciation from all authors for the technical staff who worked in the biochar applied experiment.

Funding

This study was supported by the National Key Research and Development Program of China (2021YFE0114500).

Author information

Authors and Affiliations

Authors

Contributions

D.X., G.K., S.H., and L.X. contributed to the long-term experiment conception and design, and D.X. and W.J. contributed to this research conception and design. L.T., Z.X., and D.X. performed the material preparation, data collection, and analysis. The first draft of the manuscript was written by L.T., and B.P.S. commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinliang Dong.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Jianming Xue

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhang, X., Dong, X. et al. Biochar promoted halophyte growth and enhanced soil carbon stock in a coastal salt-affected soil. J Soils Sediments (2024). https://doi.org/10.1007/s11368-024-03774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11368-024-03774-1

Keywords

Navigation