Skip to main content

Advertisement

Log in

Prediction of mortality in acute pulmonary embolism in cancer-associated thrombosis (MAUPE-C): derivation and validation of a multivariable model

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Optimal risk stratification of patients with cancer and pulmonary embolism (PE) remains unclear. We constructed a clinical prediction rule (CPR) named ‘MAUPE-C’ to identify patients with low 30 days mortality. The study retrospectively developed and internally validated a CPR for 30 days mortality in a cohort of patients with cancer and PE (both suspected and unsuspected). Candidate variables were chosen based on the EPIPHANY study, which categorized patients into 3 groups based on symptoms, signs, suspicion and patient setting at PE diagnosis. The performance of ‘MAUPE-C’ was compared to RIETE and sPESI scores. Univariate analysis confirmed that the presence of symptoms, signs, suspicion and inpatient diagnosis were associated with 30 days mortality. Multivariable logistic regression analysis led to the exclusion of symptoms as predictive variable. ‘MAUPE-C’ was developed by assigning weights to risk factors related to the β coefficient, yielding a score range of 0 to 4.5. After receiver operating characteristic (ROC) curve analysis, a cutoff point was established at ≤ 1. Prognostic accuracy was good with an area under the curve (AUC) of 0.77 (95% CI 0.71–0.82), outperforming RIETE and sPESI scores in this cohort (AUC of 0.64 [95% CI 0.57–0.71] and 0.57 [95% CI 0.49–0.65], respectively). Forty-five per cent of patients were classified as low risk and experienced a 2.79% 30 days mortality. MAUPE-C has good prognostic accuracy in identifying patients at low risk of 30 days mortality. This CPR could help physicians select patients for early discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mulder FI, Horváth-Puhó E, van Es N et al (2021) Venous thromboembolism in cancer patients: a population-based cohort study. Blood 137(14):1959–1969. https://doi.org/10.1182/blood.2020007338

    Article  CAS  PubMed  Google Scholar 

  2. Khorana AA, Connolly GC (2009) Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol 27(29):4839–4847. https://doi.org/10.1200/JCO.2009.22.3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Douma RA, Kok MGM, Verberne LM, Kamphuisen PW, Büller HR (2010) Incidental venous thromboembolism in cancer patients: prevalence and consequence. Thromb Res 125(6):e306–e309. https://doi.org/10.1016/j.thromres.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  4. Gosselin MV, Rubin GD, Leung AN, Huang J, Rizk NW (1998) Unsuspected pulmonary embolism: prospective detection on routine helical CT scans. Radiology 208(1):209–215. https://doi.org/10.1148/radiology.208.1.9646815

    Article  CAS  PubMed  Google Scholar 

  5. Font C, Carmona-Bayonas A, Beato C et al (2017) Clinical features and short-term outcomes of cancer patients with suspected and unsuspected pulmonary embolism: the EPIPHANY study. Eur Respir J 49(1):1600282. https://doi.org/10.1183/13993003.00282-2016

    Article  PubMed  Google Scholar 

  6. Aramberri M, Benegas M, Sánchez M et al (2022) Saddle pulmonary embolism in patients with cancer in the era of incidental events: clinical findings and outcomes in a single centre cohort. TH Open 6(3):e267–e275. https://doi.org/10.1055/a-1897-7061

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chan CM, Woods C, Shorr AF (2010) The validation and reproducibility of the pulmonary embolism severity index: PESI inter-observer mortality. J Thromb Haemost 8(7):1509–1514. https://doi.org/10.1111/j.1538-7836.2010.03888.x

    Article  CAS  PubMed  Google Scholar 

  8. Righini M, Roy PM, Meyer G, Verschuren F, Aujesky D, Le Gal G (2011) The simplified Pulmonary Embolism Severity Index (PESI): validation of a clinical prognostic model for pulmonary embolism: letter to the editor. J Thromb Haemost 9(10):2115–2117. https://doi.org/10.1111/j.1538-7836.2011.04469.x

    Article  CAS  PubMed  Google Scholar 

  9. Zondag W, den Exter PL, Crobach MJT et al (2013) Comparison of two methods for selection of out of hospital treatment in patients with acute pulmonary embolism. Thromb Haemost 109(01):47–52. https://doi.org/10.1160/TH12-07-0466

    Article  CAS  PubMed  Google Scholar 

  10. Jiménez D (2010) Simplification of the Pulmonary Embolism Severity Index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 170(15):1383. https://doi.org/10.1001/archinternmed.2010.199

    Article  PubMed  Google Scholar 

  11. Konstantinides SV, Meyer G, Becattini C et al (2020) 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 41(4):543–603. https://doi.org/10.1093/eurheartj/ehz405

    Article  PubMed  Google Scholar 

  12. Ortel TL, Neumann I, Ageno W et al (2020) American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. Blood Adv 4(19):4693–4738. https://doi.org/10.1182/bloodadvances.2020001830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kearon C, Akl EA, Ornelas J et al (2016) Antithrombotic therapy for VTE disease. Chest 149(2):315–352. https://doi.org/10.1016/j.chest.2015.11.026

    Article  PubMed  Google Scholar 

  14. Muñoz-Guglielmetti D, Cooksley T, Ahn S et al (2022) Risk stratification for clinical severity of pulmonary embolism in patients with cancer: a narrative review and MASCC clinical guidance for daily care. Support Care Cancer 30(10):8527–8538. https://doi.org/10.1007/s00520-022-07131-1

    Article  PubMed  Google Scholar 

  15. Li X, Hu Y, Lin P et al (2021) Comparison of different clinical prognostic scores in patients with pulmonary embolism and active cancer. Thromb Haemost 121(06):834–844. https://doi.org/10.1055/a-1355-3549

    Article  PubMed  Google Scholar 

  16. Yamashita Y, Morimoto T, Amano H et al (2020) Usefulness of simplified pulmonary embolism severity index score for identification of patients with low-risk pulmonary embolism and active cancer. Chest 157(3):636–644. https://doi.org/10.1016/j.chest.2019.08.2206

    Article  PubMed  Google Scholar 

  17. Kline JA, Roy PM, Than MP et al (2012) Derivation and validation of a multivariate model to predict mortality from pulmonary embolism with cancer: the POMPE-C tool. Thromb Res 129(5):e194–e199. https://doi.org/10.1016/j.thromres.2012.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. den Exter PL, Gómez V, Jiménez D et al (2013) A clinical prognostic model for the identification of low-risk patients with acute symptomatic pulmonary embolism and active cancer. Chest 143(1):138–145. https://doi.org/10.1378/chest.12-0964

    Article  Google Scholar 

  19. Bozas G, Jeffery N, Ramanujam-Venkatachala D et al (2018) Prognostic assessment for patients with cancer and incidental pulmonary embolism. Thromb J 16(1):8. https://doi.org/10.1186/s12959-017-0157-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Posch F, Ay C (2017) Symptoms, signs, suspicion and setting: a PESI score for cancer-associated pulmonary embolism? Eur Respir J 49(1):1602225. https://doi.org/10.1183/13993003.02225-2016

    Article  PubMed  Google Scholar 

  21. Authors/Task Force Members, Konstantinides SV, Torbicki A et al (2014) 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35(43):3033–3080. https://doi.org/10.1093/eurheartj/ehu283

    Article  CAS  Google Scholar 

  22. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  CAS  PubMed  Google Scholar 

  23. Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  24. Sullivan LM, Massaro JM, D’Agostino RB (2004) Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med 23(10):1631–1660. https://doi.org/10.1002/sim.1742

    Article  PubMed  Google Scholar 

  25. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York (corrected 7th printing)

    Book  Google Scholar 

  26. Steyerberg EW (2009) Clinical Prediction models: a practical approach to development, validation, and updating. Springer, New York

    Book  Google Scholar 

  27. Momeni M, Ghanbari A, Jokar F, Rahimi A, Leyli E (2014) Predictors of quality of life in patients with colorectal cancer in Iran. Indian J Cancer 51(4):550. https://doi.org/10.4103/0019-509X.175331

    Article  PubMed  Google Scholar 

  28. Parganiha A, Taj S, Chandel P, Sultan A, Choudhary V (2014) Effect of hospitalization on rest-activity rhythm and quality of life of cancer patients. Indian J Exp Biol 52(5):549–558

    PubMed  Google Scholar 

  29. Muñoz Martín AJ, Ruiz Zamorano MC, Viñuela Benéitez MC, Ortega Morán L, García Pérez Á, Martín JM (2020) Outpatient management of incidental pulmonary embolism in cancer patient. Clin Transl Oncol 22(4):612–615. https://doi.org/10.1007/s12094-019-02153-4

    Article  PubMed  Google Scholar 

  30. Font C, Carmona-Bayonas A, Fernández-Martinez A et al (2014) Outpatient management of pulmonary embolism in cancer: data on a prospective cohort of 138 consecutive patients. J Natl Compr Canc Netw 12(3):365–373. https://doi.org/10.6004/jnccn.2014.0038

    Article  PubMed  Google Scholar 

  31. Maraveyas A, Kraaijpoel N, Bozas G et al (2021) The prognostic value of respiratory symptoms and performance status in ambulatory cancer patients and unsuspected pulmonary embolism; analysis of an international, prospective, observational cohort study. J Thromb Haemost 19(11):2791–2800. https://doi.org/10.1111/jth.15489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to Carme Font from the Hospital Clinic de Barcelona for sharing their patient database, facilitating the development of the CPR.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Aramberri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramberri, M., González-Olmedo, J., García-Villa, A. et al. Prediction of mortality in acute pulmonary embolism in cancer-associated thrombosis (MAUPE-C): derivation and validation of a multivariable model. J Thromb Thrombolysis 57, 668–676 (2024). https://doi.org/10.1007/s11239-024-02960-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-024-02960-9

Keywords

Navigation