Skip to main content
Log in

Ecological Features and Adaptive Capabilities of Cyanobacteria in Desert Ecosystems: A Review

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Deserts represent one of the most inhospitable environments on Earth characterized by extreme daily variations in temperature, limited availability of nitrogen and water, high salinity levels, and other challenging conditions. Within these arid zones, cyanobacteria emerge as a crucial group of organisms capable of actively thriving. They form complex communities known as biocrusts, which not only ensure their own survival, but also significantly contribute to the persistence of other organisms within these ecosystems. Cyanobacteria, through their metabolic activities, play a significant role in the establishment and functioning of soil ecosystems. They are capable of generating primary organic matter, fixing molecular nitrogen, and synthesizing metabolites with potent biological activities. To endure the relentless pressures of their environment, desert cyanobacteria have evolved intricate adaptive strategies to enhance their resilience against multiple concurrent stresses. One such mechanism involves the production of secondary metabolites, enabling them to cope with the extreme conditions of drought and salinity. This comprehensive review delves into the ecological significance of desert cyanobacteria in the context of soil improvement. Additionally, the latest advancements in utilizing cyanobacteria to combat desertification and prevent soil degradation are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. I. Andreyuk, Zh. L. Kopteva, and V. V. Zanina, Cyanobacteria (Naukova Dumka, Kyiv, 1990) [in Russian].

    Google Scholar 

  2. V. A. Bananova, K. M. Petrov, V. G. Lazareva, and A. S. Unagaev, Dynamics of Desertification Processes in the North-Western Caspian Region: Physico-Geographical and Socio-Economic Aspects. Atlas-Monograph (Nats. Tsifrovoi Resur. Rukont, 2016) [in Russian].

    Google Scholar 

  3. Yu. V. Bataeva, Candidate’s Dissertation in Biology (Moscow, 2005).

  4. Yu. V. Bataeva, L. N. Grigoryan, E. A. Anikina, A. V. Fedotova, and L. V. Yakovleva, “On the issue of preventing desertification and combating the degradation of soil ecosystems using microbial-plant interactions,” in Caspian and Global Challenges (Astrakhan, 2022), pp. 19–23 [in Russian].

  5. Yu. V. Bataeva, L. N. Grigoryan, A. G. Bogun, A. A. Kislichkina, M. E. Platonov, E. A. Kurashov, J. V. Krylova, A. G. Fedorenko, and M. P. Andreeva, “Biological activity and composition of metabolites of potential agricultural application from Streptomyces carpaticus K-11 RCAM04697 (SCPM-O-B-9993),” Microbiology 92 (3), 459–467 (2023). https://doi.org/10.1134/S00262617236001550

    Article  CAS  Google Scholar 

  6. Yu. V. Bataeva, I. S. Dzerzhinskaya, and L. V. Yakovleva, “Composition of phototrophs in different soil types of Astrakhan oblast,” Eurasian Soil Sci. 50 (8), 943–951 (2017). https://doi.org/10.1134/s1064229317080026

    Article  ADS  CAS  Google Scholar 

  7. Yu. V. Bataeva, E. A. Kurashov, and Yu. V. Krylova, “Chromato-mass spectrometric study of exogenous metabolites of algal-bacterial communities in an enrichment culture,” Voda: Khim. Ekol., No. 9, 59–68 (2014).

  8. E. A. Bessolitsyna, Biology of Cyanobacteria (Kirov, 2012) [in Russian].

    Google Scholar 

  9. N. N. Bolyshev, Algae and Their Role in Soil Formation (Mosk. Univ., Moscow, 1968) [in Russian].

    Google Scholar 

  10. N. V. Velichko, D. E. Rabochaya, A. V. Dolgikh, and N. S. Mergelov, “Cyanobacteria in hypolithic horizons of soils in the Larsemann Hills oasis, East Antarctica,” Eurasian Soil Sci. 56 (8), 1067–1082 (2023). https://doi.org/10.1134/S1064229323600859

    Article  ADS  CAS  Google Scholar 

  11. A. G. Gael’ and E. A. Shtina, “Algae on sands of arid regions and their role in soil formation,” Pochvovedenie, No. 6, 67–75 (1974).

    Google Scholar 

  12. M. V. Getsen, Algae in the Ecosystems of the Far North (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  13. O. B. Glagoleva and G. M. Zenova, “Ecological characteristics of the bacterial link of algobacterial associations,” Pochvovedenie, No. 3, 19–25 (1992).

    Google Scholar 

  14. E. B. Gol’din and V. G. Gol’dina, “Ecological and biological significance of terpenes and their practical use: methodological aspects,” Ekosist. Ikh Optim. Okhr. 4, 104–111 (2011).

    Google Scholar 

  15. L. N. Grigoryan and Yu. V. Bataeva, “Ecological features and biotechnological capabilities of soil actinobacteria (review),” Teor. Prikl. Ekol., No. 2, 6–19 (2023). https://doi.org/10.25750/1995-4301-2023-2-006-019

  16. L. N. Grigoryan, Yu. V. Bataeva, L. V. Yakovleva, and V. A. Shlyakhov, “Microbiological composition of saline soils in arid territories,” Sovrem. Nauka: Aktual. Probl. Teor. Prakt. Ser. Est. Tekh. Nauki, No. 12, 6–13 (2018).

    Google Scholar 

  17. V. M. Dembitsky and M. Srebnik, “Variability of hydrocarbon and fatty acid components in cultures of the filamentous cyanobacterium Scytonema sp. isolated from microbial community “Black Cover” of limestone walls in Jerusalem," Biochemistry (Moscow) 67 (11), 1276–1282 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. V. M. Dembitsky, I. Dor, I. Shkrob, and M. Aki, “Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev Desert,” Russ. J. Bioorg. Chem. 27 (2), 110–119 (2001).

    Article  CAS  Google Scholar 

  19. V. M. Dembitsky, I. Shkrob, and J. V. Go, “Dicarboxylic and fatty acid compositions of cyanobacteria of the genus Aphanizomenon,” Biochemistry (Moscow) 66 (1), 72–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. S. V. Didovich, S. V. Moskalenko, A. D. Temraleeva, and S. A. Khapchaeva, “Biotechnological potential of soil cyanobacteria (review),” Vopr. Sovrem. Al’gol., No. 2, (2017). http://algology.ru/1170.

  21. L. I. Domracheva, A. L. Kovina, L. V. Kondakova, and T. Ya. Ashikhmina, “Cyanobacterial symbioses and the possibility of their practical use (review),” Teor. Prikl. Ekol., No. 3, 21–30 (2021). )https://doi.org/10.25750/1995-4301-2021-3-021-030

  22. A. A. Elenkin, Blue–Green Algae of the USSR. Common Part (Izd. Akad. Nauk, SSSR, Moscow–Leningrad, 1936) [in Russian].

  23. N. N. Kashirskaya, T. E. Khomutova, E. V. Chernysheva, M. V. El’tsov, and V. A. Demkin, “Population density and total biomass of microbial communities in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region,” Eurasian Soil Sci. 48 (3), 294–302 (2015). https://doi.org/10.1134/S1064229315010093

    Article  ADS  Google Scholar 

  24. N. I. Kirpenko, E. A. Kurashov, and Yu. V. Krylova, “Component composition of exometabolites in cultures of some algae,” Gidrobiol. Zh. 48 (1), 65–77 (2012).

    CAS  Google Scholar 

  25. N. I. Kirpenko, E. A. Kurashov, and Yu. V. Krylova, “Exogenous metabolite complexes of two blue-green algae in mono- and mixed cultures,” Presnovodn. Gidrobiol., No. 2 (43), 241–244 (2010).

  26. V. A. Kovda, Soil Cover. Its Improvement, Use and Protection (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  27. O. A. Koksharova, “Cyanobacteria: promising objects of scientific research and biotechnology,” Usp. Sovrem. Biol. 128 (1), 3–20 (2008).

    CAS  Google Scholar 

  28. V. Ya. Kostyaev, Doctoral Dissertation in Biology (Moscow, 1993).

  29. M. I. Kuz’menko, Mixotrophism of Blue–Green Algae and Its Ecological Significance (Nauka, Kyiv, 1981) [in Russian].

    Google Scholar 

  30. O. V. Kutovaya, E. S. Vasilenko, and M. P. Lebedeva, “Microbiological and micromorphological characteristics of extremely arid desert soils in the Ili Depression (Kazakhstan),” Eurasian Soil Sci. 45 (12), 1147–1158 (2012). https://doi.org/10.1134/S1064229312120071

    Article  ADS  Google Scholar 

  31. E. V. Ermilova, Molecular Aspects of Adaptation of Prokaryotes (Khimizdat, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  32. L. N. Novichkova-Ivanova, Soil Algae of Phytocenoses of the Sahara-Gobi Desert Region (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  33. E. M. Pankratova, “Formation of functional peculiarities of cyanobacteria along the paths of their conjugate evolution with the biosphere,” Teor. Prikl. Ekol., No. 3, 4–11 (2010).

  34. E. N. Patova, M. D. Sivkov, I. V. Novakovskaya, I. N. Egorova, D. A. Davydov, R. E. Romanov, and T. M. Kharpukhaeva, “Genetic diversity, morphology and ecology of Nostoc commune Vauch. ex Born. et Flah. (Cyanoprokaryota) from tundra to steppe ecosystems,” Probl. Bot. Yuzhn. Sib. Mong., No. 17, 229–233 (2018).

  35. Zh. F. Pivovarova, L. V. Faktorovich, and A. G. Blagodatnova, “Peculiarities of the taxonomic structure of soil photoautotrophs during the development of primary substrates,” Rastit. Mir. Aziat. Ros., No. 1, 16–21 (2012).

  36. A. V. Pinevich and S. G. Averina, “On the edge of the rainbow: red-shifted chlorophylls and far-red light photoadaptation in Cyanobacteria,” Microbiology 91 (6), 666–684 (2022). https://doi.org/10.1134/S0026261722602019

    Article  Google Scholar 

  37. Yu. M. Polya, V. I. Sukharevich, and M. S. Polyak, Cyanobacteria and Their Metabolites (Nestor-Istoriya, St. Petersburg, 2022) [in Russian].

    Google Scholar 

  38. L. A. Sirenko and V. N. Kozitskaya, Biologically Active Substances of Algae and Water Quality (Naukova Dumka, Kyiv, 1988) [in Russian].

    Google Scholar 

  39. L. S. Khaibullina and L. A. Gaisina, “Effect of salinization on the species composition and morphological features of soil algae,” Eurasian Soil Sci. 41 (2), 215–221 (2008).

    Article  ADS  Google Scholar 

  40. E. A. Tsavkelova, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2021).

  41. R. M. Shabanov and Ch. S. Bembeev, “Land degradation in the Republic of Kalmykia in the context of the global environmental problem of desertification,” in Results and Prospects for the Development of the Agro-Industrial Complex. Proceedings of International Scientific and Practical Conference (2018), pp. 476–481.

  42. E. A. Shtina, G. M. Zenova, and N. A. Manucharova, “Algological soil monitoring,” Pochvovedenie, No. 12, 1449–1461 (1998).

    Google Scholar 

  43. M. G. Shushueva, “Soil algae in biogeocenoses of the steppe zone of Northern Kazakhstan,” Bot. Zh. 79 (1), 23–32 (1985).

    Google Scholar 

  44. M. J. Acea, A. Prieto-Ferna Ândez, and N. Diz-Cid, “Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface,” Soil Biol. Biochem. 35, 513–524 (2003). https://doi.org/10.1016/S0038-0717(03)00005-1

    Article  CAS  Google Scholar 

  45. R. K. Asthana, M. K. Tripathi, A. Deepali, A. Srivastava, A. P. Singh, S. P. Singh, G. Nath, R. Srivastava, and B. S. Srivastava, “Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537,” J. Appl. Phycol. 21, 81–88 (2009).

    Article  CAS  Google Scholar 

  46. P. G. Becher, H. I. Baumann, K. Gademann, and F. Juttner, “The cyanobacterial alkaloid nostocarboline: An acetylcholinesterase and trypsin inhibitor,” J. Appl. Phycol. 21, 103–110 (2009).

    Article  CAS  Google Scholar 

  47. J. Belnap and D. Eldridge, “Disturbance and recovery of biological soil crusts,” in Biological Soil Crusts: Structure, Function, and Management (Springer, Berlin, Heidelberg, 2003), pp. 363–383.

    Book  Google Scholar 

  48. P. Benard, M. Zarebanadkouki, M. Brax, R. Kaltenbach, I. Jerjen, F. Marone, E. Couradeau, V. Felde, A. Kaestner, and A. Carminati, “Microhydrological niches in soils: how mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots,” Vadose Zone J. 18, 1–10 (2019).

    Article  Google Scholar 

  49. J. P. Berry, M. Gantar, M. H. Perez, G. Berry, and F. G. Noriega, “Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides,” Mar. Drugs 6, 117–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D. Billi, C. Verseux, C. Fagliarone, A. Napoli, M. Baqué, and J.-P. de Vera, “A Desert cyanobacterium under simulated mars-like conditions in low earth orbit: implications for the habitability of Mars,” Astrobiology 19, 158–169 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. D. Billi, D. J. Wright, R. F. Helm, T. Prickett, M. Potts, and J. H. Crowe, “Engineering desiccation tolerance in Escherichia coli,” Appl. Environ. Microbiol. 66, 1680–1684 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. F. Blom, T. Brutsch, D. Barbaras, Y. Bethuel, H. H. Locher, C. Hubschwerlen, and K. Gademann, “Potent algicides based on the cyanobacterial alkaloid nostocarboline,” Org. Lett. 8, 737–740 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. J. W. Blunt, B. R. Copp, W. P. Hu, M. H. Munro, P. T. Northcote, and M. R. Prinsep, “Marine natural products,” Nat. Prod. Rep. 26, 170–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. B. Büdel, W. J. Williams, and H. Reichenberger, “Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland,” Aust. Biogeosci. 15, 491–505 (2018). https://doi.org/10.5194/bg-15-491-2018

    Article  ADS  CAS  Google Scholar 

  55. A. M. Burja, B. Banaigs, E. Abou-Mansour, J. G. Burgess, and P. C. Wright, “Marine cyanobacteria – a prolific source of natural products,” Tetrahedron 57, 9347–9377 (2001).

    Article  CAS  Google Scholar 

  56. K. H. Cardozo, T. Guaratini, M. P. Barros, V. R. Falcão, A. P. Tonon, and N. P. Lopes, “Metabolites from algae with economical impact,” Comp. Biochem. Phys. 146, 60–78 (2007).

    Google Scholar 

  57. S. Chamizo, G. Mugnai, F. Rossi, G. Certini, and R. De Philippis, “Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration,” Front. Environ. Sci. 6, (2018). https://doi.org/10.3389/fenvs.2018.00049

  58. S. Chamizo, A. Adessi, G. Torzillo, and R. De Philippis, “Exopolysaccharide features influence growth success in biocrust-forming cyanobacteria, moving from liquid culture to sand microcosms,” Front. Microbiol. 11, 568224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Y. Chan, D. C. Lacap, M. C. Y. Lau, K. Y. Ha, K. A. Warren-Rhodes, C. S. Cockell, et al. “Hypolithic microbial communities: between a rock and a hard place,” Environ. Microbiol. 14, 2272–2282 (2012). https://doi.org/10.1111/j.1462-2920.2012

    Article  PubMed  Google Scholar 

  60. M.-Y. Chen, W.-K. Teng, L. Zhao, C.-X. Hu, Y.‑K. Zhou, B.-P. Han, L.-R. Song, and W.-S. Shu, “Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation,” ISME J. 15, 211–227 (2021).

    Article  PubMed  Google Scholar 

  61. Q. Chen, N. Yan, K. Xiong, and J. Zhao, “Cyanobacterial diversity of biological soil crusts and soil properties in karst desertification area,” Front. Microbiol. 14, 1113707 (2023). https://doi.org/10.3389/fmicb.2023.1113707

    Article  PubMed  PubMed Central  Google Scholar 

  62. Z. Cohen, Chemicals from Microalgae (Taylor & Francis, London, 1999).

    Google Scholar 

  63. L. Concostrina-Zubiri, E. Huber-Sannwald, I. MartõÂnez, J. L. F. Flores, J. A. Reyes-AguÈero, A. Escudero, et al., “Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics,” Ecol. Appl. 24 (7), 1863–1877 (2014). https://doi.org/10.1890/13-1416.1

    Article  CAS  PubMed  Google Scholar 

  64. O. Y. A. Costa, J. M. Raaijmakers, and E. E. Kuramae, “Microbial extracellular polymeric substances: ecological function and impact on soil aggregation,” Front. Microbiol. 9, 1636 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. E. Couradeau, A. Giraldo-Silva, F. De Martini, and F. Garcia-Pichel, “Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere,” Microbiome 7, 55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. P. A. Cox, S. A. Banack, S. J. Murch, U. Rasmussen, G. Tien, R. R. Bidigare, J. S. Metcalf, L. F. Morrison, G. A. Codd, and B. Bergman, “Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid,” Proc. Natl. Acad. Sci. U. S. A. 102, 5074 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. A. Crits-Christoph, C. K. Robinson, B. Ma, J. Ravel, J. Wierzchos, C. Ascaso, O. Artieda, V. Souza-Egipsy, M. C. Casero, and J. DiRuggiero, “Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid,” Environ. Front. Microbiol. 7, 301 (2016). https://doi.org/10.3389/fmicb.2016.00301

    Article  PubMed  Google Scholar 

  68. S. A. Dabravolski and S. V. Isayenkov, “Metabolites facilitating adaptation of desert cyanobacteria to extremely arid environments,” Plants 11, 3225 (2022). https://doi.org/10.3390/plants11233225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. R. B. Dixit and M. R. Suseela, “Cyanobacteria: potential candidates for drug discovery,” Antonie van Leeuwenhoek, No. 103, 947–961 (2013).

    Article  CAS  Google Scholar 

  70. E. Ertekin, V. Meslier, A. Browning, J. Treadgold, and J. Diruggiero, “Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments,” Environ. Microbiol. 23, (2020). https://doi.org/10.1111/1462-2920.15287

  71. A. Etemadi-Khah, A. A. Pourbabaee, H. A. Alikhani, M. Noroozi, and L. Bruno, “Biodiversity of isolated cyanobacteria from desert soils in Iran,” Geomicrobiol. J. 34, 784–794 (2017). https://doi.org/10.1080/01490451.2016.1271064

    Article  CAS  Google Scholar 

  72. A. M. Faist, J. E. Herrick, J. Belnap, J. W. Van Zee, and N. N. Barger, “Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem,” Ecosphere 8, e01691 (2017).

    Article  Google Scholar 

  73. V. M. Fernandes, N. M. Machado de Lima, D. Roush, J. Rudgers, S. L. Collins, and F. Garcia-Pichel, “Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert,” Environ. Microbiol. 20, 259–269 (2018). https://doi.org/10.1111/1462-2920.13983

    Article  PubMed  Google Scholar 

  74. P. F. Ferrari, D. Palmieri, A. A. Casazza, B. Aliakbarian, P. Perego, and D. Palombo, “TNF a-induced endothelial activation is counteracted by polyphenol extract from UV-stressed cyanobacterium Arthrospira platensis,” Med. Chem. Res. 24, 275–282 (2015).

    Article  CAS  Google Scholar 

  75. K. M. Finstad, A. J. Probst, B. C. Thomas, G. L. Andersen, C. Demergasso, A. Echeverría, R. G. Amundson, and J. F. Banfield, “Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama desert from genome-resolved metagenomics,” Front. Microbiol. 8, 1435 (2017). https://doi.org/10.3389/fmicb.2017.01435

    Article  PubMed  PubMed Central  Google Scholar 

  76. X. Gao, “Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria,” Microb. Ecol. 73, 255–258 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. M. Gayathri, P. S. Kumar, A. M. L. Prabha, and G. Muralitharan, “In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515,” Algal Res. 7, 100–105 (2015).

    Article  Google Scholar 

  78. L. A. Gaysina, M. Bohunicka, V. Hazukova, and J. R. Johansen, “Biodiversity of terrestrial cyanobacteria of the South Ural region,” Cryptogam.: Algol. 39, 167–198 (2018). https://doi.org/10.7872/crya/v39.iss2.2018.167

    Article  Google Scholar 

  79. W. H. Gerwick, R. C. Coates, N. Engene, L. Gerwick, R. V. Grindberg, A. C. Jones, and C. M. Sorrels, “Giant marine cyanobacteria produce exciting potential pharmaceuticals,” Microbe 3, 277–284 (2008).

    Google Scholar 

  80. N. Gul and B. Poolman, “Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli,” Mol. Membr. Biol. 30, 138–148 (2013).

    Article  PubMed  Google Scholar 

  81. A. Gupta and P. Agarwal, “Extraction, isolation, and bioassay of a gibberellin-like substance from Phormidium foveolarum,” Ann. Bot. 37, 737–741 (1973).

    Article  CAS  Google Scholar 

  82. R. M. P. Gutie’rrez, A. M. Flores, R. V. Solis, and J. C. Jimenez, “Two new antibacterial norbietane diterpenoids from cyanobacterium Micrococcus lacustris,” J. Nat. Med. 62, 328–331 (2008).

    Article  Google Scholar 

  83. M. Hagemann, M. Henneberg, V. Felde, S. L. Drahorad, S. M. Berkowicz, P. Felix-Henningsen, et al., “Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert,” Isr. Microb. Ecol. 70, 219–230 (2015). https://doi.org/10.1007/s00248-014-0533-z

    Article  ADS  Google Scholar 

  84. K. Hirata, S. Yoshitomi, S. Dwi, O. Iwabe, A. Mahakhant, J. Polchai, and K. Miyamoto, “Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169,” J. Biosci. Bioeng. 95, 512–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. A. M. Hirsch, “Hormonal regulation in plant-microbe symbioses (symposium remarks),” Biol. Plant-Microbe Interact. 4, 389–390 (2004).

    Google Scholar 

  86. I. S. Huang and P. V. Zimba, “Cyanobacterial bioactive metabolites – a review of their chemistry and biology,” Harmful Algae 83, 42–94 (2019). https://doi.org/10.1016/j.hal.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  87. A. Hussain and S. Hasnain, “Phytostimulation and biofertilization in wheat by cyanobacteria,” J. Ind. Microbiol. Biotechnol. 38, 85–92 (2010).

    Article  PubMed  Google Scholar 

  88. K. Inoue-Sakamoto, E. Nazifi, C. Tsuji, T. Asano, T. Nishiuchi, S. Matsugo, K. Ishihara, Y. Kanesaki, H. Yoshikawa, and T. Sakamoto “Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum,” J. Gen. Appl. Microbiol. 64, 203–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. S. V. Isayenkov and F. J. M. Maathuis, “Plant salinity stress: many unanswered questions remain,” Front. Plant Sci. 10, 80 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. A. O. Isichei, “The role of algae and cyanobacteria in arid Iads,” Arid Soil Res. Rehabil. 4 (1), 1–17 (1990).

    Article  Google Scholar 

  91. B. Jaki, J. Orjala, J. Heilmann, A. Linden, B. Vogler, and O. Sticher, “Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune,” J. Nat. Prod. 63, 339–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. M. A. Jepson, M. A. Clark, and B. H. Hirst, “Cell targeting by lectins: a strategy for mucosal vaccination and drug delivery,” Adv. Drug Delivery Rev. 56, 511–525 (2004).

    Article  CAS  Google Scholar 

  93. R. L. Jia, X. R. Li, L. C. Liu, Y. H. Gao, and X. T. Zhang, “Differential wind tolerance of soil crust mosses explains their micro-distribution in nature,” Soil Biol. Biochem. 45, 31–39 (2012). https://doi.org/10.1016/j.soilbio.2011.09.021

    Article  CAS  Google Scholar 

  94. S. Kajiyma, H. Kanzaki, K. Kawazu, and A. Kobayashi, “Nostofungicide, an atifungal lipopeptide from the fieldgrown terrestrial bluegreen alga Nostoc commune,” Tetrahedron Lett. 39 (22), 3737–3740 (1998).

    Article  Google Scholar 

  95. P. Kaushik and A. Chauhan, “In vitro antibacterial activity of laboratory grown culture of Spirulina platensis,” Indian J. Microbiol. 48, 348–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. I. Kedem, H. Treves, G. Noble, M. Hagemann, O. Murik, H. Raanan, N. Oren, M. Giordano, and A. Kaplan, “Keep your friends close and your competitors closer: novel interspecies interaction in desert biological sand crusts,” Phycologia 60, 419–426 (2021).

    Article  CAS  Google Scholar 

  97. B. Kultschar and C. Llewellyn, Secondary Metabolites in Cyanobacteria (InTech: Sources and Applications, 2018).https://doi.org/10.5772/intechopen.75648

  98. A. Kumar, S. Singh, A. K. Gaurav, S. Srivastava, and J. P. Verma, “Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants,” Front. Microbiol. 11, 1216 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. J. Kumar, P. Parihar, R. Singh, V. P. Singh, and S. M. Prasad, “UVB induces biomass production and nonenzymatic antioxidant compounds in three cyanobacteria,” J. Appl. Phycol. 28, 131–140 (2016).

    Article  CAS  Google Scholar 

  100. D. C. Lacap-Bugler, K. K. Lee, S. Archer, L. N. Gillman, M. C. Y. Lau, S. Leuzinger, C. K. Lee, T. Maki, C. P. McKay, J. K. Perrott, A. de los Rios-Murillo, K. A. Warren-Rhodes, D. W. Hopkins, and S. B. Pointing, “Global diversity of desert hypolithic cyanobacteria,” Front. Microbiol. 8, 867 (2017). https://doi.org/10.3389/fmicb.2017.00867

    Article  PubMed  PubMed Central  Google Scholar 

  101. S. Lan, Q. Zhang, L. Wu, Y. Liu, D. Zhang, and C. Hu, “Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities,” Environ. Sci. Technol. 48 (1), 307–315 (2014). PMID: https://doi.org/10.1021/es403785j24303976

    Article  ADS  CAS  PubMed  Google Scholar 

  102. S. S. Lee, C. J. Gantzer, A. L. Thompson, and S. H. Anderson, “Polyacrylamide efficacy for reducing soil erosion and runoff as influenced by slope,” J. Soil Water Conserv. 66 (3), 172–177 (2011). https://doi.org/10.2489/jswc.66.3.172

    Article  Google Scholar 

  103. Y. Li, M. Shao, and R. Horton, “Effect of polyacrylamide applications on soil hydraulic characteristics and sediment yield of sloping land,” Procedia Environ. Sci. 11, 763–773 (2011). https://doi.org/10.1016/j.proenv.2011.12.118

    Article  CAS  Google Scholar 

  104. Z. Li, J. Xiao, C. Chen, L. Zhao, Z. Wu, L. Liu, and D. Cai, “Promoting desert biocrust formation using aquatic cyanobacteria with the aid of MOF-based nanocomposite,” Sci. Total Environ. 15 (708), 134824 (2020). https://doi.org/10.1016/j.scitotenv.2019.134824

    Article  ADS  CAS  Google Scholar 

  105. J. Liu, B. Shi, Y. Lu, H. Jiang, H. Huang, G. Wang, et al., “Effectiveness of a new organic polymer sand-fixing agent on sand fixation,” Environ. Earth Sci. 65, 589–595 (2012). https://doi.org/10.1007/s12665-011-1106-9

    Article  ADS  CAS  Google Scholar 

  106. L. X. Ma and J. J. Led, “Determination by high field NMR spectroscopy of the longitudinal electron relaxation rate in Cu (II) plastocyanin form Anabaena variabilis,” Am. Chem. Soc. 122, 7823–7824 (2000).

    Article  CAS  Google Scholar 

  107. N. M. Machado de Lima, V. M. C. Fernandes, D. Roush, S. Velasco Ayuso, J. Rigonato, F. Garcia-Pichel, et al., “The compositionally distinct cyanobacterial biocrusts from Brazilian savanna and their environmental drivers of community diversity,” Front. Microbiol. 10, 2798 (2019). https://doi.org/10.3389/fmicb.2019.02798

    Article  PubMed  PubMed Central  Google Scholar 

  108. F. T. Maestre, N. MartõÂn, B. DõÂez, R. LoÂpez-Poma, F. Santos, I. Luque, et al., “Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils,” Microb. Ecol. 52 (3), 365–377 (2006). PMID: https://doi.org/10.1007/s00248-006-9017-016710791

    Article  ADS  PubMed  Google Scholar 

  109. E. Marinho-Soriano and E. Bourret, “Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae Rhodophyta),” Bioresour. Technol. 90, 329–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. B. Marsšálek, H. Zahradníˇcková, and M. Hronková, “Extracellular abscisic acid produced by cyanobacteria under salt stress,” J. Plant Physiol. 139, 506–508 (1992).

    Article  Google Scholar 

  111. T.A. McHugh, Z. Compson, N. van Gestel, M. Hayer, L. Ballard, M. Haverty, J. Hines, N. Irvine, D. Krassner, T. Lyons, et al., “Climate controls prokaryotic community composition in desert soils of the Southwestern United States,” FEMS Microbiol. Ecol. 93, 116 (2017).

    Article  Google Scholar 

  112. S. Mehda, M. Á. Muñoz-Martín, M. Oustani, B. Hamdi-Aïssa, E. Perona, and P. Mateo, “Microenvironmental conditions drive the differential cyanobacterial community composition of biocrusts from the Sahara desert,” Microorganisms 9, 487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. S. Miao, R. J. Anderson, and T. M. Allen, “Cytotoxic metabolites from the sponge Ianthella basta collected in Papua New Guinea,” J. Nat. Prod. 53, 1441–1446 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. I. Miralles, F. Domingo, Y. Cantón, C. Trasar-Cepeda, M. C. Leirós, and F. Gil-Sotres, “Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones,” Soil Biol. Biochem. 53, 124–132 (2012).

    Article  CAS  Google Scholar 

  115. A. Moghtaderi, M. Taghavi, and R. Rezaei, “Cyanobacteria in biological soil crust of chadormalu area, Bafq region in central Iran,” Pak. J. Nutr. 8 (7), 1083–1092 (2009).

    Article  Google Scholar 

  116. O. Murik, N. Oren, Y. Shotland, H. Raanan, H. Treves, I. Kedem, et al., “What distinguishes Cyanobacteria able to revive after desiccation from those that cannot: the genome aspect,” Environ. Microbiol. 19, 535–550 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. B. Murray, M. Dailey, E. Ertekin, and J. DiRuggiero, “Draft metagenomes of endolithic cyanobacteria and cohabitants from hyper-arid deserts,” Microbiol. Resour. Announce. 10 (30), e0020621 (2021). https://doi.org/10.1128/MRA.00206-21

    Article  Google Scholar 

  118. A. Nagatsu, H. Kajitani, and J. Sakakibara, “Muscoride A: a new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum,” Tetrahedron Lett. 36, 4097–4100 (1995).

    Article  CAS  Google Scholar 

  119. C. Nelson, A. Giraldo-Silva, and F. Garcia-Pichel, “A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium Microcoleus vaginatus,” ISME J. 15, 282–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. R. R. Nemani, C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, “Climate-driven increases in global terrestrial net primary production from 1982 to 1999,” Science 300, 1560–1563 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. R. Nisha, A. Kaushik, C. P. Kaushik, “Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil,” Geoderma 138 (12), 49–56 (2007). https://doi.org/10.1016/j.geoderma.2006.10.007

    Article  ADS  CAS  Google Scholar 

  122. I. V. Novakovskaya, E. N. Patova, Y. A. Dubrovskiy, A. B. Novakovskiy, and E. E. Kulyugina, “Distribution of algae and cyanobacteria of biological soil crusts along the elevation gradient in mountain plant communities at the northern Urals (Russian European northeast),” J. Mt. Sci. 19, 637–646 (2022). https://doi.org/10.1007/s11629-021-6952-7

    Article  Google Scholar 

  123. A. Oren and N. Gunde-Cimerman, “Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?,” FEMS Microbiol. Lett. 269, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. N. Oren, H. Raanan, I. Kedem, A. Turjeman, M. Bronstein, A. Kaplan, and O. Murik, “Desert cyanobacteria prepare in advance for dehydration and rewetting: the role of light and temperature sensing,” Mol. Ecol. 28, 2305–2320 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. C.-H. Park, X. Li, R. L. Jia, and J-S. Hur, “Effects of superabsorbent polymer on cyanobacterial biological soil crust formation in laboratory,” Arid Land Res. Manage. 29, 55–71 (2014). https://doi.org/10.1080/15324982.2014.928835

    Article  CAS  Google Scholar 

  126. C.-H. Park, X. R. Li, Y. Zhao, R. L. Jia, and J-S. Hur, “Rapid development of cyanobacterial crust in the field for combating desertification,” PLoS One 12 (6), e0179903 (2017). https://doi.org/10.1371/journal.pone.0179903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. E. Patova, M. Sivkov, and A. Patova, “Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the Subpolar Urals (European North-East Russia),” FEMS Microbiol. Ecol. 92 (9), fiw131 (2016). https://doi.org/10.1093/femsec/fiw131

    Article  CAS  PubMed  Google Scholar 

  128. S. Pointing and J. Belnap, “Microbial colonization and controls in dryland systems. Nature reviews,” Microbiology 10, 551–562 (2012). https://doi.org/10.1038/nrmicro2831

    Article  CAS  PubMed  Google Scholar 

  129. S. B. Pointing, N. Fierer, G. J. D. Smith, P. D. Steinberg, and M. Wiedmann, “Quantifying human impact on Earth’s microbiome,” Nat. Microbiol. 1, 16145 (2016). https://doi.org/10.1038/nmicrobiol.2016.145

    Article  CAS  PubMed  Google Scholar 

  130. S. B. Pointing, B. Buedel, P. Convey, L. L. Gillman, C. Koerner, S. S. Leuzinger, et al., “Biogeography of photoautotrophs in the high polar biome,” Front. Plant Sci. Funct. Plant Ecol. 6, 692 (2015). https://doi.org/10.3389/fpls.2015.00692

    Article  Google Scholar 

  131. A. A. Popova, U. Rasmussen, T. A. Semashko, V. M. Govorun, and O. A. Koksharova, “Stress effects of cyanotoxin β-methylamino-L-alanine (BMAA) on cyanobacterial heterocyst formation and functionality,” Env. Microbiol. Rep. 10, 369–377 (2018). https://doi.org/10.1111/1758-2229.12647

    Article  CAS  Google Scholar 

  132. R. A. Prasanna, A. Sood, S. Jaiswal, S. Nayak, V. Gupta, and V. Chaudhary, “Rediscovering cyanobacteria as valuable sources of bioactive compounds (review),” Appl. Biochem. Microb. 46, 119–134 (2010).

    Article  CAS  Google Scholar 

  133. M. R. Prinsep, F. R. Caplan, R. E. Moore, G. M. L. Patterson, and C. D. Smith, “Tolyphorin, a novel multidrug resistance reversing agent from the blue green algae Tolypothrix nodosa,” J. Am. Chem. Soc. 114, 385–387 (1992).

    Article  CAS  Google Scholar 

  134. E. Pushkareva, J. R. Johansen, and J. Elster, “A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts,” Polar Biol. 39, 2227–2240 (2016). https://doi.org/10.1007/s00300-016-1902-5

    Article  Google Scholar 

  135. E. Pushkareva, I. S. Pessi, Z. Namsaraev, M. J. Mano, J. Elster, and A. Wilmotte, “Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains,” Antarct. Syst. Appl. Microbiol. 41, 363–373 (2018). https://doi.org/10.1016/j.syapm.2018.01.006

    Article  CAS  Google Scholar 

  136. M. Ramirez, M. Hernandez-Marine, P. Mateo, E. Berrendero, and M. Roldan, “Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments,” Fottea 1, 73–86 (2011).

    Article  Google Scholar 

  137. R. P. Rastogi and R. P. Sinha, “Biotechnological and industrial significance of cyanobacterial secondary metabolites,” Biotechnol. Adv. 27, 521–539 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. A. Raveh and S. Carmeli, “Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel,” J. Nat. Prod. 70, 196–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. T. Rezanka and V. M. Dembitsky, “Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae,” Folia Microbiol. 51, 159–182 (2006).

    Article  CAS  Google Scholar 

  140. T. Rezanka, V. M. Dembitsky, J. V. Go, I. Dor, A. Prell, and L. Hanuš, “Sterol compositions of the filamentous nitrogen-fixing terrestrial cyanobacterium Scytonema sp.,” Folia Microbiol. 48 (3), 357–360 (2003).

    Article  CAS  Google Scholar 

  141. C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Antioxidant properties of phenolic compounds,” Trends Plant Sci. 2, 152–159 (1997).

    Article  Google Scholar 

  142. B. Roncero-Ramos, M. Á. Muñoz-Martín, S. Chamizo, L. Fernández-Valbuena, D. Mendoza, E. Perona, et al., “Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe,” Peer J. 7, 6169 (2019). https://doi.org/10.7717/peerj.6169

    Article  CAS  Google Scholar 

  143. E. Samolov, K. Baumann, B. Büdel, P. Jung, P. Leinweber, T. Mikhailyuk, U. Karsten, and K. Glaser, “Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach,” Microorganisms 8 (7), 1047 (2020). https://doi.org/10.3390/microorganisms8071047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. G. H. Schwabe, “Blaualgenprobleme,” Schweiz fur Hydrologie, Hydrographie, Hydrobiologie, Bazel 2, 207–222 (1962).

    Google Scholar 

  145. E. Sergeeva, A. Liaimer, and B. Bergman, “Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria,” Planta 215, 229 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. K. Shigeichi, A. Masashi, and H. Makoto, “Transformation of thylakoid membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging,” Plant Physiol. 161 (3), 1321–1333 (2013).

    Article  Google Scholar 

  147. M. E. Silva-Stenico, C. S. Silva, A. S. Lorenzi, T. K. Shishido, A. Etchegaray, and S. P. Lira, “Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity,” Microbiol. Res. 166, 161–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. P. K. Singh and S. Pal, “Cyanobacteria in the polar regions: diversity, adaptation, and taxonomic problems,” in Understanding Present and Past Arctic Environments (2021). https://doi.org/10.1016/B978-0-12-822869-2.00013-X

  149. R. Singh, P. Parihar, M. Singh, A. Bajguz, J. Kumar, S. Singh, V. P. Singh, and S. M. Prasad, “Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects,” Front. Microbiol. 8, 515 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. S. P. Singh, D. P. Hader, and R. P. Sinha, “Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies,” Age Res. Rev. 9, 79–90 (2010).

    Article  CAS  Google Scholar 

  151. S. Skoupý, A. Stanojković, M. Pavlíková, A. Poulíčková, and P. Dvorak, “New cyanobacterial genus Argonema is hiding in soil crusts around the world,” Sci. Rep. 7203, (2022). https://doi.org/10.1038/s41598-022-11288-4

  152. J. Sosa-Quintero, H. Godínez-Alvarez, S. L. Camargo-Ricalde, M. Gutiérrez-Gutiérrez, E. Huber-Sannwald, A. Jiménez-Aguilar, et al., “Biocrusts in Mexican deserts and semideserts: a review of their species composition, ecology, and ecosystem function,” J. Arid Environ. 199, 104712 (2022). https://doi.org/10.1016/j.jaridenv.2022.104712

    Article  ADS  Google Scholar 

  153. J. H. Steele, K. H. Brink, and B. E. Scott, “Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation,” ICES J. Mar. Sci. 76, 50–59 (2019).

    Article  Google Scholar 

  154. J. B. Stewart, V. Bomemann, J. L. Chen, R. E. Moore, F. R. Caplan, H. Karuso, L. K. Larsen, and G. M. Patterson, “Cytotoxic, fungicidal nucleosides from blue-green algae belonging to the Scytonemataceae,” J. Antibiot. 41, 1048–1056 (1988).

    Article  CAS  Google Scholar 

  155. W. A. Stirk, P. Bálint, D. Tarkowská, O. Novákc, M. Strnad, and V. Ördög, “Hormone profiles in microalgae: gibberellins and brassinosteroids,” Plant Physiol. Biochem. 70, 348–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. W. A. Stirk, V. Ordog, J. V. Staden, and K. Jager, “Cytokinins and auxin-like activity in Cyanophyta and microalgae,” J. Appl. Phycol. 14, 215–221 (2002).

    Article  CAS  Google Scholar 

  157. A. D. Temraleeva, “Cyanobacterial diversity in the soils of Russian dry steppesand semideserts,” Microbiology 87, 249–260 (2018). https://doi.org/10.1134/s0026261718020169

    Article  CAS  Google Scholar 

  158. A. Valverde, T. P. Makhalanyane, M. Seely, and D. A. Cowan, “Cyanobacteria drive community composition and functionality in rocksoil interface communities,” Mol. Ecol. 24, 812–821 (2015). https://doi.org/10.1111/mec.13068

    Article  CAS  PubMed  Google Scholar 

  159. S. Verma, S. Thapa, N. Siddiqui, and H. Chakdar, “Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches,” World J. Microbiol. Biotechnol. 38, (2022). https://doi.org/10.1007/s11274-022-03285-6

  160. R. B. Volk and F. H. Furkert, “Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth,” Microbiol. Res. 161 (2), 180–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. J. Wang, D. R. Salem, and R. K. Sani, “Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications,” Carbohydr. Polym. 205, 8–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. L. Wang, K. F. Kaseke, and M. K. Seely, “Effects of non-rainfall water inputs on ecosystem functions,” WIREs Water 4, e1179 (2017).

    Article  Google Scholar 

  163. S. D. Warren, “Biological soil crusts and hydrology in North American deserts,” in Biological Soil Crusts: Structure, Function, and Management (Springer, Berlin, Heidelberg, 2003), pp. 327–337.

    Google Scholar 

  164. B. Weber, D. Wu, A. Tamm, N. Ruckteschler, E. Rodríguez-Caballero, J. Steinkamp, H. Meusel, W. Elbert, T. Behrendt, M. Sörgel, et al., “Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in Drylands,” Proc. Natl. Acad. Sci. U. S. A. 112, 15384–15389 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  165. S. Wei, D. Lacap-Bugler, M. Lau, T. Caruso, S. Rao, A. De los Ríos, S. Archer, J. Chiu, C. Higgins, J. Van Nostrand, J. Zhou, D. Hopkins, and S. Pointing, “Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo dry Valleys, Antarctica,” Front. Microbiol. 7, 1642 (2016). https://doi.org/10.3389/fmicb.2016.01642

    Article  PubMed  PubMed Central  Google Scholar 

  166. N. E. West, “Structure and function of soil microphysics crusts in wild land ecosystems of arid and semiarid regions,” Adv. Ecol. Res. 20, 179–223 (1990).

    Article  ADS  Google Scholar 

  167. J. Wierzchos, A. D. L. Ríos, and C. Ascaso, “Microorganisms in desert rocks: the edge of life on Earth,” Int. Microbiol. 15, 173–183 (2012). https://doi.org/10.2436/20.1501.01.170

    Article  CAS  PubMed  Google Scholar 

  168. L. Williams, K. Loewen-Schneider, S. Maier, and B. Büdel, “Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient,” FEMS Microbiol. Ecol. 92, 157 (2016). https://doi.org/10.1093/femsec/fiw157

    Article  CAS  Google Scholar 

  169. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO UNESCO, 2014).

  170. Y. Wu, B. Rao, P. Wu, Y. Liu, G. Li, and D. Li, “Development of artificially induced biological soil crusts in fields and their effects on top soil,” Plant Soil 370, 115–124 (2013). https://doi.org/10.1007/s11104-013-1611-6

    Article  CAS  Google Scholar 

  171. R. K. Yadav, K. Tripathi, E. Varghese, and G. Abraham, “Physiological and proteomic studies of the cyanobacterium anabaena sp. acclimated to desiccation stress,” Curr. Microbiol. 78, 2429–2439 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. G. Yonter, “Effects of polyvinylalcohol (PVA) and polyacrylamide (PAM) as soil conditioners on erosion by runoff and by splash under laboratory conditions,” Ekoloji 19, 35–41 (2010).

    Article  CAS  Google Scholar 

  173. H. Zahradnıckova, C. Budijovice, and M. Polinska, “High-performance thin-layer chromatographic and high-performance liquid chromatographic determination of abscisic acid produced by cyanobacteria,” J. Chromatogr. A 555, 239–245 (1991).

    Article  Google Scholar 

  174. B. Zhang, R. Li, P. Xiao, Y. Su, and Y. Zhang, “Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut desert, northwestern China,” J. Basic Microbiol. 56, 308–320 (2015). https://doi.org/10.1002/jobm.201500226

    Article  PubMed  Google Scholar 

  175. X. C. Zhang, J. Y. Li, J. L. Liu, C. X. Yuan, Y. N. Li, B. R. Liu, et al., “Temporal shifts in cyanobacterial diversity and their relationships to different types of biological soil crust in the southeastern Tengger desert,” Rhizosphere 17, 100322 (2021). https://doi.org/10.1016/j.rhisph.2021.100322

    Article  Google Scholar 

  176. Z. Zhang, K. Wang, F. Hao, J. Shang, H. Tang, and B. Qiu, “New types of atp-grasp ligase are associated with the novel pathway for complicated mycosporine-like amino acid production in desiccation-tolerant cyanobacteria,” Environ. Microbiol. 23, 6420–6432 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-24-10011 “New Strains of Cyanobacteria for the Development of Methods to Combat Desertification in Astrakhan Oblast.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Bataeva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataeva, Y.V., Grigoryan, L.N. Ecological Features and Adaptive Capabilities of Cyanobacteria in Desert Ecosystems: A Review. Eurasian Soil Sc. 57, 430–445 (2024). https://doi.org/10.1134/S1064229323603001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603001

Keywords:

Navigation