Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 18, 2024

A polycatenated nickel(II) coordination polymer as a luminescence sensor for nitrofurantoin in aqueous medium

  • Liang Zhang EMAIL logo and Weiwei Cheng EMAIL logo

Abstract

A Ni(II) complex, [Ni2(FDC)2(4,4′-BMIBP)2(H2O)2·3H2O] n (1) (4,4′-BMIBP = 4,4’-bis(2-methyl-imidazolyl)biphenyl, H2FDC = 2,5-furandicarboxylic acid) was hydrothermally synthesized and structurally characterized. Complex 1 possesses a polycatenated architecture based on an undulated (4,4)-sql layer. Complex 1 can be used for the selective detection of nitrofurantoin (NFT) in aqueous solutions. The luminescence quenching mechanism of complex 1 is attributed to the competitive absorption.


Corresponding author: Liang Zhang, College of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, P.R. China, E-mail: ; and Weiwei Cheng, College of Chemical and Biological Engineering, Nanjing Normal University Taizhou College, Nanjing, 225300, P.R. China, E-mail:

  1. Research ethics: None declared.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was financially supported by the University Natural Science Foundation of Jiangsu province (No. 22KJD360001) and Intramural Research Project of Jiangsu Agri-animal Husbandry Vocational College (NSFZP202308).

  5. Data availability: Not applicable.

References

1. Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X., Zhou, H.-C. Chem. Rev. 2018, 354, 28–45; https://doi.org/10.1016/j.ccr.2017.06.007.Search in Google Scholar

2. Goswami, R., Pal, T. K., Neogi, S. Dalton Trans. 2021, 50, 4067–4090; https://doi.org/10.1039/d1dt00202c.Search in Google Scholar PubMed

3. Li, W., Li, W., Liu, X., Zhao, D., Liu, L., Yin, J., Li, X., Zhang, G., Fan, L. Cryst. Growth Des. 2023, 23, 7716–7724; https://doi.org/10.1021/acs.cgd.3c00478.Search in Google Scholar

4. Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J., Ghosh, S. K. Chem. Soc. Rev. 2017, 46, 3242–3285; https://doi.org/10.1039/c6cs00930a.Search in Google Scholar PubMed

5. Xue, Y. S., Sun, D. L., Lv, J. Q., Li, S. J., Chen, X. R., Cheng, W. W., Wu, H. X., Wang, J. CrystEngComm 2022, 24, 6376–6384; https://doi.org/10.1039/d2ce00631f.Search in Google Scholar

6. Zhao, X., Qin, B.-B., He, T., Wang, H.-P., Liu, J. Inorg. Chem. 2023, 62, 18553–18562; https://doi.org/10.1021/acs.inorgchem.3c02785.Search in Google Scholar PubMed

7. Zhai, X., Kou, Y., Liang, L., Liang, P., Su, P., Tang, Y. Inorg. Chem. 2023, 62, 18533–18542; https://doi.org/10.1021/acs.inorgchem.3c02754.Search in Google Scholar PubMed

8. Yin, H.-Q., Yin, X.-B. Acc. Chem. Res. 2020, 53, 485–495; https://doi.org/10.1021/acs.accounts.9b00575.Search in Google Scholar PubMed

9. Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Duyne, R. P. V., Hupp, J. T. Chem. Rev. 2012, 112, 1105–1125; https://doi.org/10.1021/cr200324t.Search in Google Scholar PubMed

10. Xue, Y. S., Zhang, X. Y., Tian, Z. C., Dai, J. H., Wang, Y., Tang, R. X., Fei, Z. H., Wang, J. J. Mol. Struct. 2023, 1287, 135667; https://doi.org/10.1016/j.molstruc.2023.135667.Search in Google Scholar

11. Jiang, W., Zhou, L., Jiang, H., Cheng, W., Xue, Y.-S. Z. Naturforsch. 2022, 77b, 667–672; https://doi.org/10.1515/znb-2022-0089.Search in Google Scholar

12. Shen, H. Acta Crystallogr. 2022, C78, 398–404.Search in Google Scholar

13. Sen, R., Mal, D., Brandão, P., Ferreira, R. A. S., Lin, Z. Cryst. Growth Des. 2013, 13, 272–5281.10.1021/cg401036eSearch in Google Scholar

14. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

15. Gai, S., Fan, R., Zhang, J., Sun, J., Li, P., Geng, Z., Jiang, X., Dong, Y., Wang, J., Yang, Y. Inorg. Chem. 2021, 60, 10387–10397; https://doi.org/10.1021/acs.inorgchem.1c00936.Search in Google Scholar PubMed

16. Xiong, Y., Liu, G., Wang, X., Zhang, J., Lin, H., Sha, X. CrystEngComm 2017, 19, 4561–4570; https://doi.org/10.1039/c7ce00800g.Search in Google Scholar

17. Wang, X., Liu, C., Wang, M., Zhou, X., You, Y., Xiao, H. Chem. Commun. 2022, 58, 4667–4670; https://doi.org/10.1039/d2cc00007e.Search in Google Scholar PubMed

18. Xue, Y. S., Zhang, C., Lv, J. Q., Chen, N. N., Wang, J., Chen, X. R., Fan, L. CrystEngComm 2021, 23, 1497–1506; https://doi.org/10.1039/d0ce01812k.Search in Google Scholar

19. Zhou, Z., Li, S., Wang, W., Ma, D., Zhao, H., Jia, L., Jia, Y., Yu, B. J. Mol. Struct. 2023, 1273, 134310; https://doi.org/10.1016/j.molstruc.2022.134310.Search in Google Scholar

20. Lin, Z., Li, W., Chen, Q., Chen, L., Zhang, C., Zhang, J. J. Mater. Chem. C 2022, 10, 1672–1680; https://doi.org/10.1039/d1tc05406f.Search in Google Scholar

21. Li, Y.-P., Zhang, J.-H., Zhang, X.-X., Liu, S.-J. CrystEngComm 2023, 25, 6424–6433; https://doi.org/10.1039/d3ce00961k.Search in Google Scholar

22. Mu, Z.-L., Ma, Y.-Q., Zhu, Y., Chen, Z., Xiao, H.-P., Li, X., Wang, H.-Y., Ge, J.-Y. Inorg. Chem. 2023, 62, 20314–20324; https://doi.org/10.1021/acs.inorgchem.3c03315.Search in Google Scholar PubMed

23. Zhao, D., Cui, Y., Yang, Y., Qian, G. CrystEngComm 2016, 18, 3746–3759; https://doi.org/10.1039/c6ce00545d.Search in Google Scholar

Received: 2023-12-19
Accepted: 2024-02-10
Published Online: 2024-03-18

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0111/html
Scroll to top button