Skip to main content
Log in

Density-Dependent Parametrizations in B3Y-Fetal NN Interaction: Application to Alpha Decay

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The importance of alpha decay to understanding nuclear structure has been well established. To calculate alpha decay half-lives, the choice of the nuclear potential is important. The Michigan-3-Yukawa (M3Y) nucleon-nucleon (\(\textrm{NN}\)) effective interactions and \(\textrm{NN}\) effective interactions derived from relativistic mean field theory Lagrangian (R3Y) have been successfully used in alpha decay study within the double-folding model. In this study, we investigate the use of the microscopically deduced B3Y-Fetal effective interactions that stem from the lowest order constrained variational approach (LOCV) in studying alpha decay half-lives. Secondly, we study the effect of using various density-dependent parametrizations on alpha decay half-lives. We found that the density-dependent parametrization BDB3Y0-Fetal gives the best description of the alpha decay half-lives. Moreover, in order to predict the alpha decay half-lives of unmeasured superheavy nuclei with \(Z = 120\), an empirical preformation probability formula was obtained using the BDB3Y0-Fetal results and experimental data. The preformation formula obtained together with the \(Q_{\alpha }\) values derived from the Weizsäcker-Skyrme-type nuclear mass model with radial basis corrections (WS-type+RBF) and the BDB3Y0-Fetal \(\textrm{NN}\) interaction was used to predict the alpha decay half-lives of unmeasured superheavy nuclei with \(Z = 120\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All data are included in the manuscript.

Code Availability

Codes are available on request.

References

  1. D.T. Akrawy, A.H. Ahmed, \(\alpha\)-decay systematics for superheavy nuclei. Phys. Rev. C 100, 044618 (2019)

  2. V. Zanganah, D.T. Akrawy, H. Hassanabadi, S.S. Hosseini, S. Thakur, Calculation of \(\alpha\)-decay and cluster half-lives for \(^{197-226}\)Fr using temperature-dependent proximity potential model. Nucl. Phys. A 997, 121714 (2020)

  3. D. Pathak, N. Singh, H. Kaur, S.R. Jain, Prediction of half-lives of even-even superheavy nuclei. J. Phys. G: Nucl. Part. Phys. 48, 075103 (2021)

    Article  ADS  Google Scholar 

  4. F. Ghorbani, S.A. Alavi, V. Dehghani, Alpha decay half-lives of even-even nuclei using alpha-folding interaction. Eur. Phys. J. A 58, 12 (2022)

    Article  ADS  Google Scholar 

  5. W.A. Yahya, Alpha decay half-lives of \(^{171-189}\)Hg isotopes using modified Gamow-like model and temperature dependent proximity potential. J. Nig. Soc. Phys. Sci. 2, 250–256 (2020) https://doi.org/10.46481/jnsps.2020.139

  6. H. Hassanabadi, E. Javadimanesh, S. Zarrinkamar, H. Rahimov, An angle-dependent potential and alpha-decay half-lives of deformed nuclei for \(67 \le Z \le 91\). Chin. Phys. C 37(4), 044101 (2013)

  7. V. Viola, G. Seaborg, Nuclear systematics of the heavy elements - II Lifetimes for alpha, beta and spontaneous fission decay. J. Inorg .Nucl. Chem. 28(3), 741–761 (1966)

    Article  Google Scholar 

  8. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, M.Y. Zhang, C. Asawatangtrakuldee, D. Hu, Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law. Phys. Rev. C 80, (2009). https://doi.org/10.1103/PhysRevC.80.044326

  9. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Universal decay law in charged-particle emission and exotic cluster radioactivity. Phys. Rev. Lett. 103, 072501 (2009). https://doi.org/10.1103/PhysRevLett.103.072501

    Article  ADS  Google Scholar 

  10. M. Horoi, Scaling behaviour in cluster decay. J. Phys. G Nucl. Part. Phys. 30, 945–955 (2004)

    Article  ADS  Google Scholar 

  11. G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G Nucl. Part. Phys. 26, 1149–1170 (2000)

    Article  ADS  Google Scholar 

  12. G. Royer, C. Schreiber, H. Saulnier, Analytic relations for partial alpha decay half-lives and barrier heights and positions. Int. J. Mod. Phys. E 20(4), 1030–1033 (2011)

    Article  ADS  Google Scholar 

  13. Z. Ren, C. Xu, Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei. Phys. Rev. C 70, 034304 (2004)

    Article  ADS  Google Scholar 

  14. D.T. Akrawy, H. Hassanabadi, Y. Qian, K.P. Santhosh, Influence of nuclear isospin and angular momentum on \(\alpha\)-decay half-lives. Nucl. Phys. A 983, 310–320 (2019)

  15. D.T. Akrawy, A.H. Ahmed, New empirical formula for \(\alpha\)-decay calculations. Int. J. Mod. Phys. E 27(8), 1850068 (2018)

  16. J.-G. Deng, J.-C. Zhao, P.-C. Chu, X.-H. Li, Systematic study of \({\alpha }\) decay of nuclei around the \({Z}=82, {N}=126\) shell closures within the cluster-formation model and proximity potential 1977 formalism. Phys. Rev. C 97, 044322 (2018). https://doi.org/10.1103/PhysRevC.97.044322

  17. S.M.S. Ahmed, Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei. Nucl. Phys. A 962, 103–121 (2017)

    Article  ADS  Google Scholar 

  18. R.K. Gupta, W. Greiner, Cluster radioactivity. Int. J. Mod. Phys. E 3, 335–433 (1994)

    Article  ADS  Google Scholar 

  19. B.B. Singh, S.K. Patra, R.K. Gupta, Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities. Phys. Rev. C 82, 014607 (2010)

    Article  ADS  Google Scholar 

  20. Y.J. Wang, H.F. Zhang, W. Zuo, J.Q. Li, Improvement of a fission-like model for nuclear \(\alpha\) decay. Chin. Phys. Lett. 27, 062103 (2010)

  21. J.P. Cui, Y.L. Zhang, S. Zhang, Y.Z. Wang, \(\alpha\)-decay half-lives of superheavy nuclei. Phys. Rev. C 97, 014316 (2018)

  22. G. Royer, R. Moustabchir, Light nucleus emission within a generalized liquid-drop model and quasimolecular shapes. Nucl. Phys. A 683, 182–206 (2001)

    Article  ADS  Google Scholar 

  23. B. Xiaojun, H. Zhang, H. Zhang, G. Royer, J. Li, Systematical calculation of \(\alpha\) decay half-lives with a generalized liquid drop model. Nucl. Phys. A 921, 85–95 (2014)

  24. K.P. Santhosh, D.T. Akrawy, H. Hassanabadi, A.H. Ahmed, T.A. Jose, \(\alpha\)-decay half-lives of lead isotopes within a modified generalized liquid drop model. Phys. Rev. C 101, 064610 (2020)

  25. A.A. Saeed, W.A. Yahya, O.K. Azeez, Predictions of \(\alpha\)-decay half-lives for neutron-deficient nuclei with the aid of artificial neural network. Acta Phys. Pol. B 53, 1–4 (2022)

  26. U.B. Rodríguez, C.Z. Vargas, M. Gonçalves, S.B. Duarte, F. Guzmán, Alpha half-lives calculation of superheavy nuclei with \(q_{\alpha }\)-value predictions based on the Bayesian neural network approach. J. Phys. G: Nucl. Part. Phys. 46, (2019). https://doi.org/10.1088/1361-6471/ab2c86

  27. G. Saxena, P.K. Sharma, P. Saxena, Modified empirical formulas and machine learning for \(\alpha\)-decay systematics. J. Phys. G: Nucl. Part. Phys. 48(5), 055103 (2021). https://doi.org/10.1088/1361-6471/abcd1c

  28. M. Hassanzad, O.N. Ghodsi, Theoretical study on the favored alpha-decay half-lives of deformed nuclei. Chin. Phys. C 45(12), 124106 (2021)

    Article  ADS  Google Scholar 

  29. W.A. Yahya, B.D.C. Kimene Kaya, The \(\alpha\)-decay half-lives of heavy nuclei via the double folding model with the use of relativistic NN interactions. Int. J. Mod. Phys. E 31(01), 2250002 (2022). https://doi.org/10.1142/S0218301322500021

  30. W.A. Yahya, B.J. Falaye, Alpha decay study of thorium isotopes using double folding model with NN interactions derived from relativistic mean field theory. Nucl. Phys. A 1015, (2021). https://doi.org/10.1016/j.nuclphysa.2021.122311

  31. W.A. Yahya, I.D. Olusola, A.A. Saeed, O.K. Azeez, Half-lives of \(\alpha\)-decay from nuclei with Z = 92–118 using the double folding model with relativistic NN interactions. Nucl. Phys. A 1018, 122360 (2022)

  32. J.T. Majekodunmi, M. Bhuyan, D. Jain, K. Anwar, N. Abdullah, R. Kumar, Cluster decay half-lives of Ba 112–122 isotopes from the ground state and intrinsic excited state using the relativistic mean-field formalism within the preformed-cluster-decay model. Phys. Rev. C 105(4), (2022)

  33. B. Singh, M. Bhuyan, S.K. Patra, R.K. Gupta, Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction: applied to cluster radioactive decays. J. Phys. G: Nucl. Part. Phys. 39, 025101 (2012)

    Article  ADS  Google Scholar 

  34. W.A. Yahya, K.J. Oyewumi, Calculations of the alpha decay half-lives of some polonium isotopes using the double folding model. Acta Phys. Pol. B 52(11), 1–16 (2021)

    Article  MathSciNet  Google Scholar 

  35. W.A. Yahya, T.T. Ibrahim, Cluster decay half-lives using relativistic density dependent double folding model. Eur. Phys. J. A 58, 48 (2022). https://doi.org/10.1140/epja/s10050-022-00701-1

    Article  ADS  Google Scholar 

  36. J.T. Majekodunmi, T.Y.T. Alsultan, K. Anwar, M.N. Badawi, D. Jain, R. Kumar, M. Bhuyan, The \(\alpha\)-particle clustering and half-lives of the newly discovered 207,208th decay chains within relativistic-hartree-bogoliubov approach. Nucl. Phys. A 1034, 122652 (2023) https://doi.org/10.1016/j.nuclphysa.2023.122652

  37. J.O. Fiase, K.R.S. Devan, A. Hosaka, Mass dependence of M3Y-type interactions and the effects of tensor correlations. Phys. Rev. C 66, (2002). https://doi.org/10.1103/PhysRevC.66.014004

  38. I. Ochala, J.O. Fiase, Symmetric nuclear matter calculations: a variational approach. Phys. Rev. C 98, (2018). https://doi.org/10.1103/PhysRevC.98.064001

  39. I. Ochala, J.O. Fiase, B3y-fetal effective interaction in the folding analysis of elastic scattering of \(^{16}\)o + \(^{16}\)o. Nucl. Sci. Tech. 32, 81 (2021). https://doi.org/10.1007/s41365-021-00920-z

  40. J.J. Morehead, Asymptotics of radial wave equations. J. Math. Phys. 36(10), 5431–5452 (1995). https://doi.org/10.1063/1.531270

    Article  ADS  MathSciNet  Google Scholar 

  41. N. Maroufi, V. Dehghani, S.A. Alavi, Cluster decay half-life with double-folding potential: Uncertainty analysis. Acta Phys. Pol. B 50(7), 1349 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Ni, Z. Ren, \(\alpha -\)decay calculations of medium mass nuclei within generalized density-dependent cluster model. Nucl. Phys. A 828, 348–359 (2009)

  43. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  44. C. Xu, Z. Ren, Nucl. Phys. A 760, 303–316 (2005)

    Article  ADS  Google Scholar 

  45. B.D.C. Kimene Kaya, S.M. Wyngaardt, T.T. Ibrahim, W.A. Yahya, Comparison of double-folding effective interactions within the cluster model. Phys. Rev. C 98, 044308 (2018)

  46. F. Ghorbani, S.A. Alavi, V. Dehghani, Temperature dependence of the alpha decay half-lives of even-even Th isotopes. Nucl. Phys. A 1002, 121947 (2020)

    Article  Google Scholar 

  47. D. Deng, Z. Ren, Improved double-folding \(\alpha\)-nucleus potential by including nuclear medium effects. Phys. Rev. C 96, 064306 (2017)

  48. N. Maroufi, V. Dehghani, S.A. Alavi, Alpha and cluster decay of some deformed heavy and superheavy nuclei. Nucl. Phys. A 983, 77–89 (2019)

    Article  ADS  Google Scholar 

  49. D.T. Khoa, W. Oertzen, H.G. Bohlen, Double-folding model for heavy-ion optical potential: revised and applied to study \(^{12}\rm C\) and \(^{16}\rm O\) elastic scattering. Phys. Rev. C 49, 1652–1668 (1994). https://doi.org/10.1103/PhysRevC.49.1652

  50. D.T. Khoa, \(\alpha\)-nucleus optical potential in the double-folding model. Phys. Rev. C 63, 034007 (2001). https://doi.org/10.1103/PhysRevC.63.034007

  51. A. Adel, T. Alharbi, Nuclear Physics A 958, 187 (2017)

    Article  ADS  Google Scholar 

  52. A. Adel, T. Alharbi, \(\alpha\)-decay chains of superheavy nuclei NH using a finite-range NN interaction. Braz. J. Phys. 50(4), 454–465 (2020). https://doi.org/10.1007/s13538-020-00753-y

  53. J.E. Perez Velasquez, N.G. Kelkar, N.J. Upadhyay, Assessment of nonlocal nuclear potentials in \({\alpha }\) decay. Phys. Rev. C 99, 024308 (2019). https://doi.org/10.1103/PhysRevC.99.024308

  54. D.F. Rojas-Gamboa, J.E.P. Velasquez, N.G. Kelkar, N.J. Upadhyay, Manifestation of deformation and nonlocality in \({\alpha }\) and cluster decay. Phys. Rev. C 105, 034311 (2022). https://doi.org/10.1103/PhysRevC.105.034311

  55. J.E.P. Velasquez, O.L. Caballero, N.G. Kelkar, Alpha decay of thermally excited nuclei. J. Phys. G: Nucl. Part. Phys. 50(1), 015203 (2022). https://doi.org/10.1088/1361-6471/aca03c

    Article  Google Scholar 

  56. G.L. Zhang, H. Liu, X.Y. Le, Nucleon-nucleon interactions in the double folding model for fusion reactions. Chin. Phys. B 18(1), 136–141 (2009)

    Article  ADS  Google Scholar 

  57. M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (ii). tables, graphs and references. Chin. Phys. C 45(3), 030003 (2021) https://doi.org/10.1088/1674-1137/abddaf

  58. W.J. Huang, M. Wang, F.G. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (i). evaluation of input data, and adjustment procedures. Chin. Phys. C 45(3), 030002 (2021) https://doi.org/10.1088/1674-1137/abddb0

  59. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 45(3), 030001 (2021). https://doi.org/10.1088/1674-1137/abddae

    Article  ADS  Google Scholar 

  60. J.-P. Ebran, E. Khan, T. Nikšić, D. Vretenar, How atomic nuclei cluster. Nature 487(7407), 341–344 (2012)

    Article  ADS  Google Scholar 

  61. V.Y. Denisov, A.A. Khudenko, \({\alpha }\)-decay half-lives: empirical relations. Phys. Rev. C 79, (2009). https://doi.org/10.1103/PhysRevC.79.054614

  62. O.K. Azeez, W.A. Yahya, A.A. Saeed, Predictions of the alpha-decay half-lives of even-even superheavy nuclei using modified Gamow-like model. Phys. Scr. 97, (2022). https://doi.org/10.1088/1402-4896/ac619d

  63. N.-N. Ma, H.-F. Zhang, X.-J. Bao, H.-F. Zhang, Basic characteristics of nuclear landscape by improved Weizsäcker-Skyrme-type nuclear mass model. Chin. Phys. C 43(4), (2019). https://doi.org/10.1088/1674-1137/43/4/044105

Download references

Acknowledgements

The authors appreciate the reviewers whose comments have helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: W. A. Yahya. Methodology: W. A. Yahya and G. D. Olawale. Calculations: W. A. Yahya, G. D. Olawale, and O. K. Azeez. Writing—original draft preparation: W. A. Yahya, G. D. Olawale, and J. T. Majekodunmi.

Corresponding author

Correspondence to W. A. Yahya.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

All authors consent to participate in the study.

Consent for Publication

All authors consent to publish the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, W.A., Azeez, O.K., Majekodunmi, J.T. et al. Density-Dependent Parametrizations in B3Y-Fetal NN Interaction: Application to Alpha Decay. Braz J Phys 54, 74 (2024). https://doi.org/10.1007/s13538-024-01453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01453-7

Keywords

Navigation