Skip to main content
Log in

Interaction Between Ru Nanoparticles and Pr6O11 Triggers Catalytic Ammonia Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The essential role of metal–support interaction in ammonia synthesis was investigated by using a Pr6O11 supported Ru nanoparticles (NPs) catalyst system. Loading of Ru NPs onto the Pr6O11 support with relatively low surface area yields similar metal dispersion with respect to conventional SiO2 support. The Ru NPs on the Pr6O11 was found to exhibit excellent catalytic performance in ammonia synthesis, superior to free-standing Ru NPs and Ru NPs on conventional SiO2 support. Detailed structure analysis results reveal that the superior activity of Ru/Pr6O11 can be attributed to the enhanced interaction between the Ru NPs and Pr6O11, which can modulate the electronic structure of Ru NPs and trigger catalytic ammonia synthesis over Ru NPs on Pr6O11. Furthermore, nitrogen isotope exchange experiment reveals that superior nitrogen dissociation ability is essential for the excellent activity and intrinsic activity of Ru/Pr6O11 in ammonia synthesis. These findings demonstrate that Pr6O11 can be used as a new kind of support for preparation of efficient Ru-based catalysts for ammonia synthesis, and also open up opportunities for design of Pr6O11 supported metal catalysts for other catalytic reactions.

Graphitical Abstract

Interaction between the Ru NPs and Pr6O11 can modulate the electronic structure of Ru NPs and trigger catalytic ammonia synthesis over Ru NPs on Pr6O11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu K, Luo YJ, Shen P, Li XCA, Li QQ, Guo YL (2022) Unveiling the synergy of o-vacancy and heterostructure over MoO3-x/MXene for N2 electroreduction to NH3. Adv Energy Mater 12:2103022

    Article  CAS  Google Scholar 

  2. Li XC, Shen P, Luo YJ, Li YH, Guo YL, Zhang H, Chu K (2022) PdFe single-atom alloy metallene for N2 electroreduction. Angewandte Chemie-Int Ed 61:1–9

    CAS  Google Scholar 

  3. Li XT, Shen P, Li XC, Ma DW, Chu K (2023) Sub-nm RuOX Clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 17:1081–1090

    Article  CAS  Google Scholar 

  4. Mittasch A (1950) Early studies of multicomponent catalysts. Adv Catal 2:81–104

    Article  Google Scholar 

  5. Schlogl R (2003) Catalytic synthesis of ammonia—a “never-ending story”? Angewandte Chemie-Int Ed 42:2004–2008

    Article  Google Scholar 

  6. Liu HZ (2014) Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin J Catal 35:1619–1640

    Article  CAS  Google Scholar 

  7. Bielawa H, Hinrichsen O, Birkner A, Muhler M (2001) The ammonia-synthesis catalyst of the next generation: barium-promoted oxide-supported ruthenium. Angew Chem Int Ed 40:1061–1063

    Article  CAS  Google Scholar 

  8. Niwa Y, Aika K (1996) Ruthenium catalyst supported on CeO2 for ammonia synthesis. Chem Lett 25:3–4

    Article  Google Scholar 

  9. Niwa Y, Aika K (1996) The effect of lanthanide oxides as a support for ruthenium catalysts in ammonia synthesis. J Catal 162:138–142

    Article  CAS  Google Scholar 

  10. Sato K, Imamura K, Kawano Y, Miyahara S, Yamamoto T, Matsumura S, Nagaoka K (2017) A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chem Sci 8:674–679

    Article  CAS  PubMed  Google Scholar 

  11. Miyahara SI, Sato K, Kawano Y, Imamura K, Ogura Y, Tsujimaru K, Nagaoka K (2021) Ammonia synthesis over lanthanoid oxide-supported ruthenium catalysts. Catal Today 376:36–40

    Article  CAS  Google Scholar 

  12. Ogura Y, Sato K, Miyahara S, Kawano Y, Toriyama T, Yamamoto T, Matsumura S, Hosokawa S, Nagaoka K (2018) Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75 catalyst pre-reduced at high temperature. Chem Sci 9:2230–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogura Y, Tsujimaru K, Sato K, Miyahara S, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K (2018) Ru/La0.5Pr0.5O1.75 catalyst for low-temperature ammonia synthesis. ACS Sustain Chem Eng 6:17258–17266

    Article  CAS  Google Scholar 

  14. Jacobsen CJH, Dahl S, Hansen PL, Tornqvist E, Jensen L, Topsoe H, Prip DV, Moenshaug PB, Chorkendorff I (2000) Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J Mol Catal A 163:19–26

    Article  CAS  Google Scholar 

  15. Song Z, Cai TH, Hanson JC, Rodriguez JA, Hrbek J (2004) Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. J Am Chem Soc 126:8576–8584

    Article  CAS  PubMed  Google Scholar 

  16. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Norskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814–1817

    Article  ADS  Google Scholar 

  17. Dahl S, Tornqvist E, Chorkendorff I (2000) Dissociative adsorption of N2 on Ru(0001): a surface reaction totally dominated by steps. J Catal 192:381–390

    Article  CAS  Google Scholar 

  18. Rarog-Pilecka W, Miskiewicz E, Szmigiel D, Kowalczyk Z (2005) Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon. J Catal 231:11–19

    Article  CAS  Google Scholar 

  19. Wu Y, Li C, Fang B, Wang X, Ni J, Lin B, Lin J, Jiang L (2020) Enhanced ammonia synthesis performance of ceria-supported Ru catalysts via introduction of titanium. Chem Commun (Camb) 56:1141–1144

    Article  CAS  PubMed  Google Scholar 

  20. Wang XY, Ni J, Lin BY, Wang R, Lin JX, Wei KM (2010) Highly efficient Ru/MgO-CeO2 catalyst for ammonia synthesis. Catal Commun 12:251–254

    Article  CAS  Google Scholar 

  21. Thangadurai V, Huggins RA, Weppner W (2001) Mixed ionic-electronic conductivity in phases in the praseodymium oxide system. J Solid State Electrochem 5:531–537

    Article  CAS  Google Scholar 

  22. Li C, Liu H, Yang J (2015) A facile hydrothermal approach to the synthesis of nanoscale rare earth hydroxides. Nanoscale Res Lett 10:144

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borodzinski A, Bonarowska M (1997) Relation between crystallite size and dispersion on supported metal catalysts. Langmuir 13:5613–5620

    Article  CAS  Google Scholar 

  24. Murata S, Aika K (1992) Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia-synthesis. 1. An alumina-supported ruthenium catalyst. J Catal 136:110–117

    Article  CAS  Google Scholar 

  25. Liang CH, Wei ZB, Xin Q, Li C (2001) Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds. Appl Catal A 208:193–201

    Article  CAS  Google Scholar 

  26. van Deelen TW, Hernández Mejía C, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2:955–970

    Article  Google Scholar 

  27. Lou Y, Xu J, Zhang Y, Pan C, Dong Y, Zhu Y (2020) Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Mater Today Nano 12:100093

    Article  Google Scholar 

  28. Yan L, Yu RB, Liu GR, Xing XR (2008) A facile template-free synthesis of large-scale single crystalline Pr(OH)3 and Pr6O11 nanorods. Scr Mater 58:707–710

    Article  CAS  Google Scholar 

  29. Sinev MY, Graham GW, Haack LP, Shelef M (1996) Kinetic and structural studies of oxygen availability of the mixed oxides Pr(1–x)M(x)O(y) (M=Ce, Zr). J Mater Res 11:1960–1971

    Article  ADS  CAS  Google Scholar 

  30. Borchert H, Frolova YV, Kaichev VV, Prosvirin IP, Alikina GM, Lukashevich AI, Zaikovskii VI, Moroz EM, Trukhan SN, Ivanov VP, Paukshtis EA, Bukhtiyarov VI, Sadykov VA (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109:5728–5738

    Article  CAS  PubMed  Google Scholar 

  31. Narula CK, Haack LP, Chun W, Jen HW, Graham GW (1999) Single-phase PrOy-ZrO2 materials and their oxygen storage capacity: a comparison with single-phase CeO2-ZrO2, PrOy-CeO2, and PrOy-CeO2-ZrO2 materials. J Phys Chem B 103:3634–3639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22179128), the National Key Research and Development Program of China (2021YFB4000401), the Dalian High-level Talents Program (2019RD09) and the Liaoning Revitalization Talents Program (XLYC2002076).

Funding

The study was supported by the National Natural Science Foundation of China (22179128), Dalian High-level Talents Program (2019RD09), National Key Research and Development Program of China (2021YFB4000401), and Liaoning Revitalization Talents Program (XLYC2002076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Liu, L., Ju, X. et al. Interaction Between Ru Nanoparticles and Pr6O11 Triggers Catalytic Ammonia Synthesis. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04629-7

Keywords

Navigation