Skip to main content
Log in

Regional differences in the ultrastructure of mucosal macrophages in the rat large intestine

  • Short Communication
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We previously clarified the histological characteristics of macrophages in the rat small intestine using serial block-face scanning electron microscopy (SBF-SEM). However, the regional differences in the characteristics of macrophages throughout the large intestine remain unknown. Here, we performed a pilot study to explore the regional differences in the ultrastructure of mucosal macrophages in the large intestine by using SBF-SEM analysis. SBF-SEM analysis conducted on the luminal side of the cecum and descending colon revealed macrophages as amorphous cells possessing abundant lysosomes and vacuoles. Macrophages in the cecum exhibited a higher abundance of lysosomes and a lower abundance of vacuoles than those in the descending colon. Macrophages with many intraepithelial cellular processes were observed beneath the intestinal superficial epithelium in the descending colon. Moreover, macrophages in contact with nerve fibers were more prevalent in the cecum than in the descending colon, and a subset of them surrounded a nerve bundle only in the cecum. In conclusion, the present pilot study suggested that the quantity of some organelles (lysosomes and vacuoles) in macrophages differed between the cecum and the descending colon and that there were some region-specific subsets of macrophages like nerve-associated macrophages in the cecum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  • Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E (2016) Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol 14:e1002340

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bujko A, Atlasy N, Landsverk OJB, Richter L, Yaqub S, Horneland R, Øyen O, Aandahl EM, Aabakken L, Stunnenberg HG, Bækkevold ES, Jahnsen FL (2018) Transcriptional and functional profiling defines human small intestinal macrophage subsets. J Exp Med 215:441–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, Zhang XM, Foo S, Nakamizo S, Duan K, Kong WT, Gentek R, Balachander A, Carbajo D, Bleriot C, Malleret B, Tam JKC, Baig S, Shabeer M, Toh SES, Schlitzer A, Larbi A, Marichal T, Malissen B, Chen J, Poidinger M, Kabashima K, Bajenoff M, Ng LG, Angeli V, Ginhoux F (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363:eaau0964

    Article  CAS  PubMed  Google Scholar 

  • Chapuy L, Bsat M, Sarkizova S, Rubio M, Therrien A, Wassef E, Bouin M, Orlicka K, Weber A, Hacohen N, Villani AC, Sarfati M (2019) Two distinct colonic CD14+subsets characterized by single-cell RNA profiling in Crohn’s disease. Mucosal Immunol 12:703–719

    Article  CAS  PubMed  Google Scholar 

  • Cummings RJ, Barbet G, Bongers G, Hartmann BM, Gettler K, Muniz L, Furtado GC, Cho J, Lira SA, Blander JM (2016) Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, Voytyuk I, Schmidt I, Boeckx B, Dierckx de Casterlé I, Baekelandt V, Gonzalez Dominguez E, Mack M, Depoortere I, De Strooper B, Sprangers B, Himmelreich U, Soenen S, Guilliams M, Vanden Berghe P, Jones E, Lambrechts D, Boeckxstaens G (2018) Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175:400–415

    Article  PubMed  Google Scholar 

  • Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D, Madan R, Karp CL, Pulendran B (2011) Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol 187:733–747

    Article  CAS  PubMed  Google Scholar 

  • Desaki J, Fujiwara T, Komuro T (1984) A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy. Arch Histol Jpn 47:179–186

    Article  CAS  PubMed  Google Scholar 

  • Eustaquio T, Wang C, Dugard CK, George NI, Liu F, Slikker WJ, Paule MG, Howard PC, Paredes AM (2018) Electron microscopy techniques employed to explore mitochondrial defects in the developing rat brain following ketamine treatment. Exp Cell Res 373:164–170

    Article  CAS  PubMed  Google Scholar 

  • Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D (2016) Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:378–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross-Vered M, Trzebanski S, Shemer A, Bernshtein B, Curato C, Stelzer G, Salame TM, David E, Boura-Halfon S, Chappell-Maor L, Leshkowitz D, Jung S (2020) Defining murine monocyte differentiation into colonic and ileal macrophages. Elife 9:e49998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S, Chen D, Zhang JN, Lv X, Wang K, Duan LP, Nie Y, Wu XL (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8:e74957

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Güldner FH, Wolff JR, Keyserlingk DG (1972) Fibroblasts as a part of the contractile system in duodenal villi of rat. Z Zellforsch Mikrosk Anat 135:349–360

    Article  PubMed  Google Scholar 

  • Hirsch JG, Fedorko ME, Cohn ZA (1968) Vesicle fusion and formation at the surface of pinocytic vacuoles in macrophages. J Cell Biol 38:629–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johkura K, Usuda N, Tanaka Y, Fukasawa M, Murata K, Noda T, Ohno N (2022) Whole-cell observation of ZIO-stained Golgi apparatus in rat hepatocytes with serial block-face scanning electron microscope, SBF-SEM. Microscopy (oxf) 71:262–270

    Article  CAS  PubMed  Google Scholar 

  • Kang B, Alvarado LJ, Kim T, Lehmann ML, Cho H, He J, Li P, Kim BH, Larochelle A, Kelsall BL (2020) Commensal microbiota drive the functional diversification of colon macrophages. Mucosal Immunol 13:216–229

    Article  CAS  PubMed  Google Scholar 

  • Komuro T, Hashimoto Y (1990) Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol 53:1–21

    Article  CAS  PubMed  Google Scholar 

  • Koscsó B, Kurapati S, Rodrigues RR, Nedjic J, Gowda K, Shin C, Soni C, Ashraf AZ, Purushothaman I, Palisoc M, Xu S, Sun H, Chodisetti SB, Lin E, Mack M, Kawasawa YI, He P, Rahman ZSM, Aifantis I, Shulzhenko N, Morgun A, Bogunovic M (2020) Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci Immunol 5:eaax0062

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantani Y, Haruta T, Nishida M, Yokoyama T, Hoshi N, Kitagawa H (2019) Three-dimensional analysis of fibroblast-like cells in the lamina propria of the rat ileum using serial block-face scanning electron microscopy. J Vet Med Sci 81:454–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantani Y, Haruta T, Nakanishi S, Sakata N, Yuasa H, Yokoyama T, Hoshi N (2021) Ultrastructural and phenotypical diversity of macrophages in the rat ileal mucosa. Cell Tissue Res 385:697–711

    Article  CAS  PubMed  Google Scholar 

  • Mantani Y, Ohno N, Haruta T, Nakanishi S, Morishita R, Murase S, Yokoyama T, Hoshi N (2023) Histological study on the reginal difference in the localization of mucosal enteric glial cells and their sheath structure in the rat intestine. J Vet Med Sci 85:1034–1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyaki T, Kawasaki Y, Hosoyamada Y, Amari T, Kinoshita M, Matsuda H, Kakuta S, Sakai T, Ichimura K (2020) Three-dimensional imaging of podocyte ultrastructure using FE-SEM and FIB-SEM tomography. Cell Tissue Res 379:245–254

    Article  CAS  PubMed  Google Scholar 

  • Monaco S, Gehrmann J, Raivich G, Kreutzberg GW (1992) MHC-positive, ramified macrophages in the normal and injured rat peripheral nervous system. J Neurocytol 21:623–634

    Article  CAS  PubMed  Google Scholar 

  • Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D, Stanley ER, Dahan S, Margolis KG, Gershon MD, Merad M, Bogunovic M (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa K, Higuchi K, Arakawa T, Kobayashi K, Kaneda K (2000) Phenotypical and morphological analyses of intraepithelial and lamina propria lymphocytes in normal and regenerating gastric mucosa of rats in comparison with those in intestinal mucosa. Arch Histol Cytol 63:159–167

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S, Mantani Y, Haruta T, Yokoyama T, Hoshi N (2020) Three-dimensional analysis of neural connectivity with cells in rat ileal mucosa by serial block-face scanning electron microscopy. J Vet Med Sci 82:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi S, Mantani Y, Ohno N, Morishita R, Yokoyama T, Hoshi N (2023) Histological study on regional specificity of the mucosal nerve network in the rat large intestine. J Vet Med Sci 85:123–134

    Article  CAS  PubMed  Google Scholar 

  • Oldfors A (1980) Macrophages in peripheral nerves. An ultrastructural and enzyme histochemical study on rats. Acta Neuropathol 49:43–49

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer CR, Shomorony A, Aronova MA, Zhang G, Cai T, Xu H, Notkins AL, Leapman RD (2015) Quantitative analysis of mouse pancreatic islet architecture by serial block-face SEM. J Struct Biol 189:44–52

    Article  CAS  PubMed  Google Scholar 

  • Phillips RJ, Powley TL (2012) Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci 169:12–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sánchez NM, Mahú I, Mendes R, Gres V, Kubasova N, Morris I, Arús BA, Larabee CM, Vasques M, Tortosa F, Sousa AL, Anandan S, Tranfield E, Hahn MK, Iannacone M, Spann NJ, Glass CK, Domingos AI (2017) Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 23:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA (2018) The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 9:1272

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Shaw MH, Kamada N, Kim YG, Núñez G (2012) Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med 209:251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw TN, Houston SA, Wemyss K, Bridgeman HM, Barbera TA, Zangerle-Murray T, Strangward P, Ridley AJL, Wang P, Tamoutounour S, Allen JE, Konkel JK, Grainger JR (2018) Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med 215:1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers KM, Bush SJ, Hume DA (2020) Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 18:e3000859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson J, Yirinec B, Burke E, Bushnell A, Silverstein SC (1986) Effect of alterations in the size of the vacuolar compartment on pinocytosis in J774.2 macrophages. J Cell Physiol 128:195–201

    Article  CAS  PubMed  Google Scholar 

  • Takaki T, Ohno N, Saitoh S, Nagai M, Joh K (2019) Podocyte penetration of the glomerular basement membrane to contact on the mesangial cell at the lesion of mesangial interposition in lupus nephritis: a three-dimensional analysis by serial block-face scanning electron microscopy. Clin Exp Nephrol 23:773–781

    Article  PubMed  Google Scholar 

  • Tamura S, Mantani Y, Nakanishi S, Ohno N, Yokoyama T, Hoshi N (2022) Region specificity of fibroblast-like cells in the mucosa of the rat large intestine. Cell Tissue Res 389:427–441

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Ohno N, Osanai Y, Saitoh S, Thai TQ, Nishimura K, Shinjo T, Takemura S, Tatsumi K, Wanaka A (2021) Large-scale electron microscopic volume imaging of interfascicular oligodendrocytes in the mouse corpus callosum. Glia 69:2488–2502

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the JSPS KAKENHI grants (16K18813, 20K15902, and JP16H06280), by the Cooperative Study Program (20-229) of National Institute for Physiological Sciences, and by the Foundation of Kinoshita Memorial Enterprise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhei Mantani.

Ethics declarations

Research involving animals

This study was approved by the Institutional Animal Care and Use Committee (permission number 30-05-01). All procedures in studies involving animals were performed in accordance with the ethical standards of the institution (the Kobe University Animal Experimentation Regulations) or at the practice at which the studies were conducted.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3.79 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murase, S., Mantani, Y., Ohno, N. et al. Regional differences in the ultrastructure of mucosal macrophages in the rat large intestine. Cell Tissue Res (2024). https://doi.org/10.1007/s00441-024-03883-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00441-024-03883-w

Keywords

Navigation