Skip to main content
Log in

The Stokes Dirichlet-to-Neumann operator

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^d\) be a bounded open connected set with Lipschitz boundary. Let \(A^N\) and \(A^D\) be the Stokes Neumann operator and Stokes Dirichlet operator on \(\Omega \), respectively. We study the associated Stokes version of the Dirichlet-to-Neumann operator and show a Krein formula which relates these three Stokes version operators. We also prove a Stokes version of the Friedlander inequalities, which relates the Dirichlet eigenvalues and the Neumann eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors make no data available, since the manuscript has no available data.

References

  1. Alt, H. W., Linear functional analysis. Universitext. Springer-Verlag, Berlin etc., 2016.

  2. Arendt, W. and Elst, A. F. M. ter, Sectorial forms and degenerate differential operators. J. Operator Theory 67 (2012), 33–72.

    MathSciNet  Google Scholar 

  3. Arendt, W., Elst, A. F. M. ter, Kennedy, J. B. and Sauter, M., The Dirichlet-to-Neumann operator via hidden compactness. J. Funct. Anal. 266 (2014), 1757–1786.

    Article  MathSciNet  Google Scholar 

  4. Arendt, W. and Mazzeo, R., Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains. Ulmer Seminare 12 (2007), 23–37.

    Google Scholar 

  5. Arendt, W. and Mazzeo, R., Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Commun. Pure Appl. Anal. 11 (2012), 2201–2212.

    Article  MathSciNet  Google Scholar 

  6. Batty, C. J. K. and Elst, A. F. M. ter, On series of sectorial forms. J. Evol. Equ. 14 (2014), 29–47.

    Article  MathSciNet  Google Scholar 

  7. Behrndt, J., Rohleder, J. and Stadler, S., Eigenvalue inequalities for Schrödinger operators on unbounded Lipschitz domains. J. Spectr. Theory 8 (2018), 493–508.

    Article  MathSciNet  Google Scholar 

  8. Calderón, A., On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.

  9. Dahlberg, B. E. J., Kenig, C. E. and Verchota, G. C., Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57 (1988), 795–818.

    Article  MathSciNet  Google Scholar 

  10. Filonov, N., On an inequality between Dirichlet and Neumann eigenvalues for the Laplace operator. St. Petersburg Math. J. 16 (2005), 413–416.

    Article  MathSciNet  Google Scholar 

  11. Frank, R. L. and Laptev, A., Inequalities between Dirichlet and Neumann eigenvalues on the Heisenberg group. Int. Math. Res. Not. 2010 (2010), 2889–2902.

    Article  MathSciNet  Google Scholar 

  12. Friedlander, L., Some inequalities between Dirichlet and Neumann eigenvalues. Arch. Rational Mech. Anal. 116 (1991), 153–160.

    Article  ADS  MathSciNet  Google Scholar 

  13. Gesztesy, F. and Mitrea, M., Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Differential Equations 247 (2009), 2871–2896.

    Article  ADS  MathSciNet  Google Scholar 

  14. Hansson, A. M., An inequality between Dirichlet and Neumann eigenvalues of the Heisenberg Laplacian. Comm. Partial Differential Equations 33 (2008), 2157–2163.

    Article  MathSciNet  Google Scholar 

  15. Kato, T., Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1980.

  16. Lions, J. L., Lectures on elliptic partial differential equations. Lectures on Mathematics 10. Tata Institute of Fundamental Research, Bombay, 1957.

  17. Lotoreichik, V. and Rohleder, J., Eigenvalue inequalities for the Laplacian with mixed boundary conditions. J. Differential Equations 263 (2017), 491–508.

    Article  ADS  MathSciNet  Google Scholar 

  18. Mazzeo, R., Remarks on a paper of Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues. Internat. Math. Res. Notices 4 (1991), 41–48.

    Article  Google Scholar 

  19. Maz’ya, V. G., Sobolev spaces with applications to elliptic partial differential equations. Second edition, Grundlehren der mathematischen Wissenschaften 342. Springer-Verlag, Berlin etc., 2011.

  20. Mitrea, M., Monniaux, S. and Wright, M., The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. 176 (2011), 409–457.

    Article  MathSciNet  Google Scholar 

  21. Nitsche, J. A., On Korn’s second inequality. RAIRO Anal. Numér. 15 (1981), 237–248.

    Article  MathSciNet  Google Scholar 

  22. Payne, L. E., Inequalities for eigenvalues of membranes and plates. J. Rational Mech. Anal. 4 (1955), 517–529.

    MathSciNet  Google Scholar 

  23. Pólya, G., Remarks on the foregoing paper. J. Math. Physics 31 (1952), 55–57.

    Article  MathSciNet  Google Scholar 

  24. Provenzano, L., Inequalities between Dirichlet and Neumann eigenvalues of the polyharmonic operators. Proc. Amer. Math. Soc. 147 (2019), 4813–4921.

    Article  MathSciNet  Google Scholar 

  25. Reed, M. and Simon, B., Methods of modern mathematical physics IV. Analysis of operators. Academic Press, New York etc., 1978.

  26. Safarov, Y., On the comparison of the Dirichlet and Neumann counting functions. Amer. Math. Soc. Transl. 225 (2008), 191–204.

    MathSciNet  Google Scholar 

  27. Saito, H., Global solvability of the Navier–Stokes equations with a free surface in the maximal \(L_p-L_q\) regularity class. J. Differential Equations 264 (2018), 1475–1520.

    Article  ADS  MathSciNet  Google Scholar 

  28. Shibata, Y. and Shimizu, S., On the Stokes equation with Neumann boundary condition. In Regularity and other aspects of the Navier–Stokes equations. Banach Center Publications Vol. 70, 239–250. Polish Academy of Sciences, Warszawa, 2005.

  29. Sohr, H., The Navier–Stokes equation. An elementary functional analytic approach. Birkhäuser, Basel, 2001.

    Book  Google Scholar 

  30. Solonnikov, V. A., On the transient motion of an isolated volume of viscous incompressible fluid. Math. USSR, Izv. 31, No. 2 (1988), 381–405.

  31. Temam, R., Navier–Stokes equations. Theory and numerical analysis. Studies in mathematics and its applications 2. North-Holland Publishing Company, Amsterdam, 1977.

  32. Tice, I. and Zbarsky, S., Decay of solutions to the linearized free surface Navier–Stokes equations with fractional boundary operators. J. Math. Fluid Mech. 22 (2020). Paper 48.

  33. Tolksdorf, P., The Stokes resolvent problem: optimal pressure estimates and remarks on resolvent estimates in convex domains. Calc. Var. Partial Differ. Equ. 59:154 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Sylvie Monniaux for helpful discussions and the referee for the comments and improvements. The authors are most grateful for the hospitality and fruitful stay of the first-named author at the University of Auckland and the second-named author at the Aix-Marseille Université. This work is partly supported by the Aix-Marseille Université, an NZ-EU IRSES counterpart fund and the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand and the EU Marie Curie IRSES program, project ‘AOS’, No. 318910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. M. ter Elst.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

We conclude with a converse of Lemma 2.12 for \(C^2\)-domains.

Proposition A.1

Let \(\Omega \subset \mathbb {R}^d\) be a bounded open connected set with \(C^2\)-boundary. Let \(\alpha \in (-1,1]\) and \(\lambda \in \mathbb {R}\). Let \({{\mathcal {N}}}_\lambda \) be the Dirichlet-to-Neumann graph with parameter \(\alpha \) as in Sect. 2. Further let \(A^D\) be the Stokes Dirichlet operator on \(\Omega \). Then \({{\mathcal {N}}}_\lambda \) is an operator if and only if \(\lambda \in \mathbb {R}\setminus \sigma (A^D)\).

Proof

By Lemma 2.12 it remains to show that \(\textrm{mult}({{\mathcal {N}}}_\lambda ) \ne \{ 0 \} \) for all \(\lambda \in \sigma (A^D)\). Let \(\lambda \in \sigma (A^D)\). Since \(A^D\) has a point spectrum, there exists a \(u \in D(A^D)\) such that \(A^D u = \lambda \, u\) and \(u \ne 0\). By Proposition 2.4 there exists a \(\pi \in L_2(\Omega )\) such that \(- \Delta u + \nabla \pi = \lambda \, u\) in \(H^{-1}(\Omega ,\mathbb {C}^d)\). Then [29] Theorem III.2.1.1(e) implies that \(u \in H^2(\Omega ,\mathbb {C}^d)\) and \(\nabla \pi \in L_2(\Omega ,\mathbb {C}^d)\). Hence \(\pi \in H^1(\Omega )\) by [19] Corollary 1.1.11. Therefore Lemma 2.5 implies that \(\partial _\nu (u,\pi ) \in L_2(\partial \Omega , \mathbb {C}^d)\). Adding a suitable constant to \(\pi \) one may assume that \(\partial _\nu (u,\pi ) \in L_{2,0}(\partial \Omega , \mathbb {C}^d)\).

Now suppose that \(\partial _\nu (u,\pi ) = 0\). Then \(u \in D(A^N)\), the Stokes Dirichlet operator, by Proposition 2.10. Moreover, \(A^N u = \lambda \, u\). By the verification of Condition (I) in the proof of Theorem 3.11 one obtains that \(u = 0\), which is a contradiction. So \(\partial _\nu (u,\pi ) \in L_{2,0}(\partial \Omega , \mathbb {C}^d) {\setminus } \{ 0 \} \). Using (2) one deduces that

$$\begin{aligned} (\partial _\nu (u,\pi ), {\textrm{Tr}\,\,}v)_{L_{2,0}(\partial \Omega , \mathbb {C}^d)} = \mathfrak {a}(u,v) - \int _\Omega \lambda \, u \cdot {\overline{v}} = \mathfrak {b}_\lambda (u,v) \end{aligned}$$

for all \(v \in V\), where \(\mathfrak {a}\) and \(\mathfrak {b}_\lambda \) are as in Sect. 2. Hence \(({\textrm{Tr}\,\,}u, \partial _\nu (u,\pi )) \in {{\mathcal {N}}}_\lambda \). But \({\textrm{Tr}\,\,}u = 0\) since \(u \in D(A^D)\). Therefore \(0 \ne \partial _\nu (u,\pi ) \in \textrm{mult}({{\mathcal {N}}}_\lambda )\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, C., ter Elst, A.F.M. The Stokes Dirichlet-to-Neumann operator. J. Evol. Equ. 24, 22 (2024). https://doi.org/10.1007/s00028-023-00930-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00930-x

Keywords

Mathematics Subject Classification

Navigation