Skip to main content
Log in

Two-Dimensional Molybdenum Disulfide–Water: Intercalation Processes, New Functional Properties, and Application Prospects

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Modern research findings for the interaction of two-dimensional molybdenum disulfide (primarily in the nanocrystalline state) with water and air moisture were analyzed. Studies focusing on water intercalation/deintercalation processes and mechanisms in nanocrystalline d-transition metal dichalcogenides (TMDs, mainly 2D MoS2) are at their initial stage. Intercalated water was found to significantly influence the multifunctional properties of 2D MoS2 nanostructures and microsized powders. The need for interdisciplinary studies of 2D TMD nanostructures intercalated with water through complex mechanisms was justified. In particular, the studies should include the development of intercalation/deintercalation nanotechnologies, establishment of interrelationships between the intercalation processes/mechanisms and the state of actual surfaces and features of actual nanostructures, determination of differences in intercalation processes and mechanisms for various semiconductor and metallic nanostructures, and design of multifunctional low-dimensional van der Waals nanomaterials with controllable properties based on nanosized 2D/nD heterostructures (n = = 0, 1, 2, 3) intercalated with water. Promising applications for 2D MoS2 nanostructures intercalated with water are as follows: nanotechnologies of heterostructures with abnormal water properties, tribological characteristics of solid lubricants with moisture present, nanotechnologies using water or aqueous solutions, sorbents and photocatalysts for water purification, electro(photo, piezo)catalysts for the production of hydrogen and oxygen through water electrolysis, as well as hydrovoltaic effects, air humidity sensors, biosensors, and disinfection agents (COVID-19 pandemic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, and A.Z. Moshfegh, “Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives,” Nanoscale Horiz., 3, 90– 204 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro Neto, “2D materials and van der Waals heterostructures,” Science, 353, Issue 6298, aac9439-1–aac9439-11 (2016).

  3. Z. Wang, R. Li, C. Su, and K.P. Loh, “Intercalated phases of transition metal dichalcogenides,” Smart Mat., 1, Issue 1, 1–27 (2020).

    Google Scholar 

  4. D. Gupta, V. Chauhan, and R. Kumar, “A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments,” Inorg. Chem. Commun., 121, 108200–108218 (2020).

    Article  CAS  Google Scholar 

  5. K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, O. Zhengbiao, H. Zhang, and Z. Guo, “Recent developments in emerging two-dimensional materials and their applications,” J. Mater. Chem. C, 8, 387–440 (2020).

    Article  CAS  Google Scholar 

  6. S. Bertolazzi, M. Gobbi, Y. Zhao, C. Backes, and P. Samori, “Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides,” Chem. Soc. Rev., 47, 6845–6888 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. J. Wan, S.D. Lacey, J. Dai, W. Bao, M.S. Fuhrer, and L. Hu, “Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications,” Chem. Soc. Rev., 45, 6742–6765 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, and T. Zhai, “Doping engineering and functionalization of two dimensional metal chalcogenides,” Nanoscale Horiz., 4, 26–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. L.M. Kulikov, “Metal intercalation of layered d-transition metal dichalcogenides using chemical transport reactions,” Dokl. Nats. Akad. Nauk Ukrainy, No. 11, 142–147 (2000).

  10. J. Azadmanjiri, V.K. Srivastava, P. Kumar, Z. Sofer, J. Min, and J. Gong, “Graphene-supported 2D transition metal dichalcogenide van der Waals heterostructures,” Appl. Mater. Today, 19, 100600–100633 (2020).

    Article  Google Scholar 

  11. Q. Fu and X. Bao, “Surface chemistry and catalysis confined under two-dimensional materials,” Chem. Soc. Rev., 46, 1842–1874 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. D.B. Sulas-Kern, E.M. Miller, and J.L. Blackburn, “Photoinduced charge transfer in transition metal dichalcogenide heterojunctions—towards next generation energy technologies,” Energy Environ. Sci., 13, 2684–2740 (2020).

    Article  CAS  Google Scholar 

  13. G. Li, Y.-Y. Zhang, H. Guo, L. Huang, H. Lu, X. Lin, Y.-L. Wang, S. Du, and H.-J. Gao, “Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds,” Chem. Soc. Rev., 47, 6073–6100 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Q. Lv and R. Lv, “Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications,” Carbon, 145, 240–250 (2019).

    Article  CAS  Google Scholar 

  15. J. Su, G.-D. Li, X.-H. Li, and J.-S. Chen, “2D/2D heterojunctions for catalysis,” Adv. Sci., 6, 1801702– 1801721 (2019).

    Article  Google Scholar 

  16. U. Burghaus, “Adsorption of water on two-dimensional crystals: water/graphene and water/silicatene,” Inorganics, 4, Issue 10, 10–17 (2016).

    Article  Google Scholar 

  17. Z. Peng, R. Yang, M.A. Kim, L. Li, and H. Liu, “Influence of O2, H2O and airborne hydrocarbons on the properties of selected 2D materials,” R. Soc. Chem. Adv., 7, 27048–27057 (2017).

    CAS  Google Scholar 

  18. L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K.S. Novoselov, and A.K. Geim, “Anomalously low dielectric constant of confined water,” Science, 360, 1339–1342 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. P. Bampoulis, K. Sotthewes, E. Dollekamp, and B. Poelsema, “Water confined in two-dimensions: Fundamentals and applications,” Surf. Sci. Rep., 73, 233–264 (2018).

    Article  CAS  Google Scholar 

  20. B. Lian, S.D. Luca, Y. You, S. Alwarappan, M. Yoshimura, V. Sahajwalla, S.C. Smith, G. Leslie, and R.K. Joshi, “Extraordinary water adsorption characteristics of graphene oxide,” Chem. Sci., 9, 5106–5111 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Chen, X. He, C. Xiao, and S.H. Kim, “Effect of humidity on friction and wear—A critical review,” Lubricants, 6, Issue 3, 74–100 (2018).

    Article  Google Scholar 

  22. D. Berman, A. Erdemir, and A.V. Sumant, “Approaches for achieving superlubricity in two-dimensional materials,” ACS Nano, 12, 21222137 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, and A.V. Sumant, “Macroscale superlubricity enabled by graphene nanoscroll formation,” Science, 348, Issue 6239, 1118–1122 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. H. Li, J. Wang, S. Gao, Q. Chen, L. Peng, K. Liu, and X. Wei, “Superlubricity between MoS2 monolayers,” Adv. Mater., 29, Issue 27, 1701474–1701480 (2017).

    Article  Google Scholar 

  25. Y. Meng, J. Xu, Z. Jin, B. Prakash, and Y. Hu, “A review of recent advances in tribology,” Friction, 8, Issue 2, 221–300 (2020).

    Article  Google Scholar 

  26. Q. Li, Q. Zhou, L. Sh, Q. Chena, and J. Wang, “Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials in ambient conditions and passivation strategies,” J. Mater. Chem. A, 7, 4291– 4312 (2019).

    Article  CAS  Google Scholar 

  27. Y. Yuan, R. Guo, L. Hong, X. Ji, Z. Li, Z. Lin, and W. Pan, “Recent advances and perspectives of MoS2- based materials for photocatalytic dyes degradation: A review,” Coll. Surf. A: Physicochem. Eng. Aspects, 611, 125836–125856 (2020).

    Article  Google Scholar 

  28. K. Khan, K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang, W. Huang, A. Mahmood, N. Mahmood, K. Khan, H. Zhang, and Z. Guo, “Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation,” Nano Micro Lett., Issue 12, 167–244 (2020).

  29. G. Guan, E. Ye, M. You, and Z. Li, “Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: Current status and future perspectives,” Small, 1907087–1907101 (2020).

  30. C. Liu, Q. Wang, F. Jia, and S. Song, “Adsorption of heavy metals on molybdenum disulfide in water: A critical review,” J. Mol. Liq., 292, 111390–111427 (2019).

    Article  CAS  Google Scholar 

  31. V. Kromah and G. Zhang, “Aqueous adsorption of heavy metals on metal sulfide nanomaterials: Synthesis and application,” Water, 13, 1843–1869 (2021).

    Article  CAS  Google Scholar 

  32. X. Li, Q. Li, W. Linghu, R. Shen, B. Zhao, L. Dong, A. Alsaedi, T. Hayat, J. Wang, and J. Liu, “Sorption properties of U(VI) and Th(IV) on two-dimensional Molybdenum Disulfide (MoS2) nanosheets: Effects of pH, ionic strength, contact time, humic acids and temperature,” Environ. Technol. Innovation, 11, 328–338 (2018).

    Article  Google Scholar 

  33. J. Liu, J. Ma, Z. Zhang, Y. Qin, Y.-J. Wang, Y. Wang, R. Tan, X. Duan, T.Z. Tian, C.H. Zhang, W.W. Xie, N.-W. Li, L. Yu, C. Yang, Y. Zhao, H. Zia, F. Nosheen, G. Zheng, S. Gupta, X. Wu, Z. Wang, J. Qiu, G. Zhou, L. Xu, K. Liu, J. Fu, M. Liu, S.-I. Choi, J. Xie, X. Peng, T. Li, G. Lin, J. Wang, J. Han, H. Liang, S. Li, X. Zhang, Y. Zhu, T. He, X. Cui, H. Wang, Z. Wei, Q. Liu, G. Fan, Q. Liu, X. Sun, Y. Feng, Y. Liu, K. Chu, Y. Qiu, and X. Liu, “Roadmap: electrocatalysts for green catalytic processes,” J. Phys. Mater., 4, No. 2, 022004–P022094 (2021).

    Article  CAS  Google Scholar 

  34. T. Rao, H. Wang, Y.-J. Zeng, Z. Guo, H. Zhang, and W. Liao, “Phase transitions and water splitting applications of 2D transition metal dichalcogenides and metal phosphorous trichalcogenides,” Adv. Sci., 20022–20048 (2021).

  35. L. Lin, P. Sherrell, Y. Liu, W. Lei, S. Zhang, H. Zhang, G.G. Wallace, and J. Chen, “Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis,” Adv. Energy Mater., 1903870–1903894 (2020).

  36. P. Prabhu, V. Jose, and J.-M. Lee, “Design strategies for development of TMD-based heterostructures in electrochemical energy systems,” Matter, No. 2, 526–553 (2020).

    Article  Google Scholar 

  37. Q. Zhu, Y. Qu, D. Liu, K.W. Ng, and H. Pan, “Two-dimensional layered materials: High-efficient electrocatalysts for hydrogen evolution reaction,” ACS Appl. Nano Mater., 3, No. 7, 6270–6296 (2020).

    Article  CAS  Google Scholar 

  38. V.-H. Nguyen, T.P. Nguyen, T.-H. Le, D.-V.N. Vo, D.L.T. Nguyen, Q.T. Trinh, T. Kim, and Q.V. Le, “Recent advances in two-dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction,” J. Chem. Technol. Biotechnol., 95, Issue 10, 2597–2607 (2020).

    Article  CAS  Google Scholar 

  39. P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D.D. Dionysiou, and S.C. Pillai, “2D nanomaterials for photocatalytic hydrogen production,” ACS Energy Lett., No. 4, 16871709 (2019).

  40. N.N. Rosman, R.M. Yunus, L.J. Minggu, K. Arifin, M.N.I. Salehmin, M.A.M. Mohamed, and M.B. Kassim, “Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview,” J. Hydrogen Energy, 43, Issue 41, 18925–18945 (2018).

    Article  CAS  Google Scholar 

  41. T. Zhang, Z. Wen, Y. Liu, Z. Zhang, Y. Xie, and X. Sun, “Hybridized nanogenerators for multifunctional self-powered sensing: Principles, prototypes, and perspectives,” Science, 101813–10818 (2020).

  42. Y. Han, Z. Zhang, and L. Qu, “Power generation from graphene–water interactions,” Flat Chem., 14, 100090–100105 (2019).

    Article  CAS  Google Scholar 

  43. A.S. Aji, R. Nishi, H. Ago, and Y. Ohno, “High output voltage generation of over 5 V from liquid motion on single-layer MoS2,” Nano Energy, 68, 104370–1043099 (2020).

    Article  CAS  Google Scholar 

  44. I.G. Vasilyeva, I.P. Asanov, and L.M. Kulikov, “Experiments and consideration about surface nonstoichiometry of few-layer MoS2 prepared by chemical vapor deposition,” J. Phys. Chem. C, 119, Issue 40, 23259–23267 (2015).

    Article  CAS  Google Scholar 

  45. L. Zhang, K. Khan, J. Zou, H. Zhang, and Y. Li, “Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis,” Adv. Mater. Interfaces, 6, Issue 22, 14400–14410 (2019).

    Article  Google Scholar 

  46. H. Tang, L.N. Sacco, S. Vollebregt, H. Ye, X. Fan, and G. Zhang, “Recent advances in 2D nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives,” J. Mater. Chem. A, 8, 24943–24976 (2020).

    Article  CAS  Google Scholar 

  47. X. Chen, C. Liu, and S. Mao, “Environmental analysis with 2D transition metal dichalcogenide based field- effect transistors,” Nano Micro Lett., 12, 95–119 (2020).

    Article  Google Scholar 

  48. R. Kumar, W. Zheng, X. Liu, J. Zhang, and M. Kumar, “MoS2-based nanomaterials for room-temperature gas sensors,” Adv. Mater. Technol., 1901062–1901090 (2020).

  49. L. Wang, D. Xu, L. Jiang, J. Gao, Z. Tang, Y. Xu, X. Chen, and H. Zhang, “Transition metal dichalcogenides for sensing and oncotherapy: Status, challenges, and perspective,” Adv. Funct. Mater., 2004408–2004428 (2020).

  50. R. Kumar, N. Goel, M. Hojamberdiev, and M. Kumar, “Transition metal dichalcogenides-based flexible gas sensors,” Sens. Actuators A, 303, 111875–11902 (2020).

    Article  CAS  Google Scholar 

  51. M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, and Z. Stamenkovic, “Semiconductor gas sensors: Materials, technology, design, and application,” Sensors, 20, 6694–6724 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. B. Peng, F. Zhao, J. Ping, and Y. Ying, “Recent advances in nanomaterial-enabled wearable sensors: Material synthesis, sensor design, and personal health monitoring,” Small, 2002681–2002705 (2020).

  53. R. Malik, V. Tomer, Y.K. Mishra, and L. Lin, “Functional gas sensing nanomaterials: A panoramic view,” Appl. Phys. Rev., 7, 021301-1–021301-99 (2020).

  54. M.T. Rahman, R. Kumar, M. Kumar, and Q. Qiao, “Two-dimensional transition metal dichalcogenides and their composites for lab-based sensing applications: Recent progress and future outlook,” Sens. Actuators A, 318, 112517–112580 (2021).

    Article  CAS  Google Scholar 

  55. S. Afroj, L. Britnell, T. Hasan, D.V. Andreeva, K.S. Novoselov, and N. Karim, “Graphene-based technologies for tackling COVID-19 and future pandemics,” Adv. Funct. Mater., 2107407–2107420 (2021).

  56. C. Muratore and M.K. Muratore, “Beyond point of care diagnostics: Low-dimensional nanomaterials for electronic virus sensing,” J. Vac. Sci. Technol. A, 38, Issue 5, 050804–050820 (2020).

    Article  CAS  Google Scholar 

  57. J. Zhao, S. Huang, P. Ravisankar, and H. Zhu, “Two-dimensional nanomaterials for photoinduced antibacterial applications,” ACS Appl. Bio Mater., 3, Issue 12, 8188–8210 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. L. Mei, S. Zhu, W. Yin, C. Chen, G. Nie, Z. Gu, and Y. Zhao, “Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives,” Theranostics, 10, Issue 2, 757–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. P. Kumar, S. Roy, A. Sarkar, and A. Jaiswal, “Reusable MoS2–modified antibacterial fabrics with photothermal disinfection properties for repurposing of personal protective masks,” ACS Appl. Mater. Interfaces, 13, Issue 11, 12912–12927 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kulikov.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 62, Nos. 7–8 (552), pp. 11–23, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, L.M. Two-Dimensional Molybdenum Disulfide–Water: Intercalation Processes, New Functional Properties, and Application Prospects. Powder Metall Met Ceram 62, 390–399 (2023). https://doi.org/10.1007/s11106-024-00402-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-024-00402-y

Keywords

Navigation