Skip to main content
Log in

Balanced reconstruction codes for single edits

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Motivated by the sequence reconstruction problem initiated by Levenshtein, reconstruction codes were introduced by Cai et al. to combat errors when a fixed number of noisy channels are available. The central problem on this topic is to design codes with sizes as large as possible, such that every codeword can be uniquely reconstructed from any N distinct noisy reads, where N is fixed. In this paper, we study binary reconstruction codes with the constraint that every codeword is balanced, which is a fundamental requirement in the technique of DNA-based storage. For all possible channels with a single edit error and their variants, we design asymptotically optimal balanced reconstruction codes for all N, and show that the number of their redundant symbols decreases from \(\frac{3}{2}\log _2 n+O(1)\) to \(\frac{1}{2}\log _2n+\log _2\log _2n+O(1)\), and finally to \(\frac{1}{2}\log _2n+O(1)\) but with different speeds, where n is the length of the code. Compared with the unbalanced case, our results imply that the balanced property does not reduce the rate of the reconstruction code in the corresponding codebook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Not applicable.

Code availibility

Not applicable.

References

  1. Agrell E., Vardy A., Zeger K.: Upper bounds for constant-weight codes. IEEE Trans. Inf. Theory 46(7), 2373–2395 (2000).

    Article  MathSciNet  Google Scholar 

  2. Al-Bassam S., Bose B.: Design of efficient error-correcting balanced codes. IEEE Trans. Comput. 42(10), 1261–1266 (1993).

    Article  Google Scholar 

  3. Bar-Lev D., Kobovich A., Leitersdorf O., Yaakobi E.: Universal framework for parametric constrained coding (2023). arXiv:2304.01317.

  4. Berge C.: Hypergraphs. Combinatorics of Finite Sets, 1st edn North Holland, Amsterdam (1989).

    Google Scholar 

  5. Bibak K., Milenkovic O.: Explicit formulas for the weight enumerators of some classes of deletion correcting codes. IEEE Trans. Inf. Theory 67(3), 1809–1816 (2019).

    Article  Google Scholar 

  6. Bitan S., Etzion T.: Constructions for optimal constant-weight cyclically permutable codes and difference families. IEEE Trans. Inf. Theory 41(1), 77–87 (1995).

    Article  MathSciNet  Google Scholar 

  7. Blake-Wilson S., Phelps K.T.: Constant weight codes and group divisible designs. Des. Codes Cryptogr. 16(1), 11–27 (1999).

    Article  MathSciNet  Google Scholar 

  8. Cai K., Kiah H.M., Nguyen T.T., Yaakobi E.: Coding for sequence reconstruction for single edits. IEEE Trans. Inf. Theory 68(1), 66–79 (2021).

    Article  MathSciNet  Google Scholar 

  9. Cai K., Chee Y.M., Gabrys R., Kiah H.M., Nguyen T.: Correcting a single indel/edit for DNA-based data storage: linear-time encoders and order-optimality. IEEE Trans. Inf. Theory 67(6), 3438–3451 (2021).

    Article  MathSciNet  Google Scholar 

  10. Chee Y.M., Kiah H.M., Vardy A., Vu V.K., Yaakobi E.: Coding for racetrack memories. IEEE Trans. Inf. Theory 64(11), 7094–7112 (2018).

    Article  MathSciNet  Google Scholar 

  11. Chrisnata J., Kiahy H.M.: Correcting two deletions with more reads. In: Proceedings of IEEE International Symposium on Information Theory, Melbourne, Australia, pp. 2666–2671 (2021).

  12. Chrisnata J., Kiah H.M., Yaakobi E.: Optimal reconstruction codes for deletion channels. In: Proceedings of IEEE International Symposium on Information Theory, Kapolei, USA, pp. 279–283 (2020).

  13. Chrisnata J., Kiah H.M., Yaakobi E.: Correcting deletions with multiple reads. IEEE Trans. Inf. Theory 68(11), 7141–7158 (2022).

    Article  MathSciNet  Google Scholar 

  14. Deng R.H., Herro M.A.: DC-free coset codes. IEEE Trans. Inf. Theory 34(4), 786–792 (1988).

    Article  MathSciNet  Google Scholar 

  15. Fu F.W., Wei K.W.: Self-complementary balanced codes and quasi-symmetric designs. Des. Codes Cryptogr. 27(3), 271–279 (2002).

    Article  MathSciNet  Google Scholar 

  16. Gabrys R., Yaakobi E.: Sequence reconstruction over the deletion channel. In: Proceedings of IEEE International Symposium on Information Theory, Barcelona, Spain, pp. 1596–1600 (2016).

  17. Gabrys R., Yaakobi E.: Sequence reconstruction over deletion channel. IEEE Trans. Inf. Theory 64(4), 2924–2931 (2018).

    Article  MathSciNet  Google Scholar 

  18. Graham R.L., Sloane N.J.A.: Lower bounds for constant weight codes. IEEE Trans. Inf. Theory 26(1), 37–43 (1980).

    Article  MathSciNet  Google Scholar 

  19. Györfi N.Q.A.L., Massey J.L.: Constructions of binary constant-weight cyclic codes and cyclically permutable codes. IEEE Trans. Inf. Theory 38(3), 940–949 (1992).

    Article  MathSciNet  Google Scholar 

  20. Immink K., Cai K.: Properties and constructions of constrained codes for DNA-based data storage. IEEE Acess 8, 49523–49531 (2020).

    Article  Google Scholar 

  21. Jiang T., Vardy A.: Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes. IEEE Trans. Inf. Theory 50(8), 1655–1664 (2004).

    Article  MathSciNet  Google Scholar 

  22. Knuth D.: Efficient balanced codes. IEEE Trans. Inf. Theory 32(1), 51–53 (1986).

    Article  MathSciNet  Google Scholar 

  23. Konstantinova E.: Reconstruction of signed permutations from their distorted patterns. In: Proceedings of IEEE International Symposium on Information Theory, Adelaide, Australia, pp. 474–477 (2005).

  24. Konstantinova E.: On reconstruction of signed permutations distorted by reversal errors. Discret. Math. 308(5–6), 974–984 (2008).

    Article  MathSciNet  Google Scholar 

  25. Kulkarni A.A., Kiyavash N.: Nonasymptotic upper bounds for deletion correcting codes. IEEE Trans. Inf. Theory 59(8), 5115–5130 (2013).

    Article  MathSciNet  Google Scholar 

  26. Lan L., Chang Y.: Two-weight codes: upper bounds and new optimal constructions. Discret. Math. 342(11), 3098–3113 (2019).

    Article  MathSciNet  Google Scholar 

  27. Leiss, E.L.: Data integrity in digital optical disks. IEEE Trans. Comput. c-33(9):818–827 (1984).

  28. Lenz A., Siegel P.H., Wachter-Zeh A., Yaakobi E.: Coding over sets for DNA storage. IEEE Trans. Inf. Theory 66(4), 2331–2351 (2020).

    Article  MathSciNet  Google Scholar 

  29. Levenshtein V.I.: Binary codes capable of correcting deletions, insertions and reversals. Dokl. Akad. Nauk SSSR, 1965, 163(4):845–848, 1965. English translation in Sov. Phys. Dokl., 10(8):707–710. (1966).

  30. Levenshtein V.I.: Efficient reconstruction of sequences. IEEE Trans. Inf. Theory 47(1), 2–22 (2001).

    Article  MathSciNet  Google Scholar 

  31. Levenshtein V.I.: Efficient reconstruction of sequences from their subsequences or supersequences. J. Comb. Theory A 93(2), 310–332 (2001).

    Article  MathSciNet  Google Scholar 

  32. Levenshtein V.I., Siemons J.: Error graphs and the reconstruction of elements in groups. J. Comb. Theory A 116(4), 795–815 (2009).

    Article  MathSciNet  Google Scholar 

  33. Levenshtein V.I., Konstantinova E., Konstantinov E., Molodtsov S.: Reconstruction of a graph from 2-vicinities of its vertices. Discret. Appl. Math. 156(9), 1399–1406 (2008).

    Article  MathSciNet  Google Scholar 

  34. Matoušek J., Nešetřil J.: Invitation to Discrete Mathematics, 2nd edn Oxford University Press, Oxford (2009).

    Google Scholar 

  35. Nguyen T., Cai K., Immink K.: Efficient design of subblock energy-constrained codes and sliding window-constrained codes. IEEE Trans. Inf. Theory 67(12), 7914–7924 (2021).

    Article  MathSciNet  Google Scholar 

  36. Ordentlich E., Roth R.M.: Two-dimentional weight-constrained codes through enumeration bounds. IEEE Trans. Inf. Theory 46(4), 1292–1301 (2000).

    Article  Google Scholar 

  37. Sala F., Gabrys R., Schoeny C., Dolecek L.: Exact reconstruction from insertions in synchronization codes. IEEE Trans. Inf. Theory 63(4), 2428–2445 (2017).

    Article  MathSciNet  Google Scholar 

  38. Schoeny C., Wachter-Zeh A., Gabrys R., Yaakobi E.: Codes correcting a burst of deletions or insertions. IEEE Trans. Inf. Theory 63(4), 1971–1985 (2017).

    Article  MathSciNet  Google Scholar 

  39. Shi M., Sepasdar Z., Alahmadi A., Solé P.: On two-weight \({\mathbb{Z} }_{2^k}\)-codes. Des. Codes Cryptogr. 86(6), 1201–1209 (2018).

    Article  MathSciNet  Google Scholar 

  40. Shi M., Wang X., Solé P.: Two families of two-weight codes over \({\mathbb{Z} }_4\). Des. Codes Cryptogr. 88(12), 2493–2505 (2020).

    Article  MathSciNet  Google Scholar 

  41. Sloane N.J.A.: On single-deletion-correcting codes. In: Codes and Designs: Proceedings of Conference Honoring Professor D.K. Ray-Chaudhuri on the Occasion of his 65th Birthday (2000).

  42. Sun Y., Ge G.: Correcting two-deletion with a constant number of reads. IEEE Trans. Inf. Theory 69(5), 2969–2982 (2023).

    Article  MathSciNet  Google Scholar 

  43. Tilborg H.V., Blaum M.: On error-correcting balanced codes. IEEE Trans. Inf. Theory 35(5), 1091–1095 (1989).

    Article  MathSciNet  Google Scholar 

  44. Wang X.M., Yang Y.X.: On the undetected error probability of nonlinear binary constant weight codes. IEEE Trans. Commun. 42(7), 2390–2394 (1994).

    Article  Google Scholar 

  45. Wang Y., Noor-A-Rahim M., Gunawan E., Guan Y., Poh C.L.: Construction of bio-constrained code for DNA data storage. IEEE Commun. Lett. 23(6), 963–966 (2019).

    Article  Google Scholar 

  46. Wei H.J., Schwartz M.: Sequence reconstruction for limited-magnitude errors. IEEE Trans. Inf. Theory 68(7), 4422–4434 (2022).

    Article  MathSciNet  Google Scholar 

  47. Yaakobi E., Schwartz M., Langberg M., Bruck J.: Sequence reconstruction for Grassmann graphs and permutations. In: Proceedings of IEEE International Symposium on Information Theory, Istanbul, Turkey, pp. 874–878 (2013).

  48. Yazdi S.M.H.T., Kiah H.M., Garcia-Ruiz E., Ma J., Zhao H., Milenkovic O.: DNA-based storage: trends and methods. IEEE Trans. Mol. Biol. Multi-Scale Commun. 1(3), 230–248 (2015).

    Article  Google Scholar 

  49. Yazdi S.M.H.T., Kiah H.M., Gabrys R., Milenkovic O.: Mutually uncorrelated primers for DNA-based data storage. IEEE Trans. Inf. Theory 64(9), 6283–6296 (2018).

    Article  MathSciNet  Google Scholar 

  50. Ye Z., Liu X., Zhang X., Ge G.: Reconstruction of sequences distorted by two insertions. IEEE Trans. Inf. Theory 69(8), 4977–4992 (2023).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this paper.

Additional information

Communicated by T. Etzion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of X. Zhang was supported by the National Key Research and Development Program of China 2020YFA0713100 and 2023YFA1010200, the NSFC under Grants Nos. 12171452 and 12231014, and the Innovation Program for Quantum Science and Technology 2021ZD0302902. The research of R. Wu was supported by China Postdoctoral Science Foundation under Grant No. 2021M703098.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Zhang, X. Balanced reconstruction codes for single edits. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01377-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01377-y

Keywords

Mathematics Subject Classification

Navigation