Skip to main content
Log in

Design and Analysis of a Novel Broadband Tweaked T-shaped Stub-loaded Quadrature Power-Splitter

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper analytical approach to design a broadband microstrip quadrature 3-dB power splitter is proposed and validated. The proposed quadrature splitter in this paper utilizes a double-stage coupled line Wilkinson power divider in conjunction with a modified phase shifter to induce phase delay at one output port. Compared with the conventional T- shaped stub, the proposed configuration of Tweaked T-shaped stubs exhibits better performance without adding any fabrication complexity, which in turn improves the performance of the quadrature power splitter. In testing, the proposed quadrature Wilkinson power divider covers 2–4.5 GHz (fractional bandwidth FBW = 76.9%) working frequency with 10-dB impedance and 15-dB isolation bandwidth. Furthermore, this design has a very good phase and amplitude balance, with a 7° phase and 1 dB amplitude imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbosh AM (2007) Ultra-wideband phase shifters. IEEE Trans Microw Theory Tech 55(9):1935–1941

    Article  ADS  Google Scholar 

  • Ahn HR (2006) Asymmetric passive components in microwave integrated circuits. Wiley 2006

  • Al-Taei S, Lane P, Passiopoulos G (2001) Design of high directivity directional couplers in multilayer ceramic technologies. IEEE MTT-S Int Microw Symps Dig 1:51–54

    Google Scholar 

  • Chen X, Liu W, Zhang Y, Shi Y (2017) Polarization-insensitive broadband 2 × 2 3 dB power splitter based on silicon-bent directional couplers. Opt Lett 42:3738–3740

    Article  CAS  PubMed  ADS  Google Scholar 

  • Deng PH, Dai LC (2012) Unequal Wilkinson power dividers with favorable selectivity and high-isolation using coupled-line filter transformers. IEEE Trans Microw Theory Tech 60(6):1520–1529

    Article  ADS  Google Scholar 

  • Dittloff J, Arndt F, Grauerholz D (1988) Optimum design of waveguide E-plane stub-loaded phase shifters. IEEE Trans Microw Theory Tech 36(3):582–587

    Article  ADS  Google Scholar 

  • Guo Y, Zhang Z, Ong L (2006) Improved wideband Schiffman phase shifter. IEEE Trans Microw Theory Tech 54(3):1196–1200

    Article  ADS  Google Scholar 

  • Guo YX, Khoo KW, Ong LC (2008) Wideband circularly polarized patch antenna using broadband baluns. IEEE Trans Antennas Propag 56(2):319–326

    Article  ADS  Google Scholar 

  • Honari MM, Mirzavand L, Mirzavand R, Abdipour A, Mousavi P (2016) Theoretical design of broadband multisection Wilkinson power dividers with arbitrary power split ratio. IEEE Trans Compon Packag Manuf Tech 6(4):605–612

    Article  Google Scholar 

  • Krishnamurthy L, Van Tuyen Vo, Sloan R, Williams K, Rezazadeh AA (2004) Broadband CPW multilayer directional couplers on GaAs for MMIC applications. High Frequency Postgraduate Student Colloquium, 183–188, Manchester, UK, 2004

  • Kumari S, Pal R, Mondal P (2020) A wideband subharmonic mixer with low conversion loss and high port-to-port isolations. IEEE Trans Circuits Syst II Express Briefs 67(10):1695–1699

    Google Scholar 

  • Kumari S and Mondal P (2019) A fixed-tuned 85–105 GHz subharmonic mixer using schottky diodes. In: IEEE MTT-S International Microwave and RF Conference (IMARC) 2019, Mumbai, India, 1–5

  • Kumari S, Mondal P (2020) A low conversion loss single balanced subharmonic mixer. Int J RF Microw Comput Aided Eng 30(5)

  • Lange J (1969) Interdigitated stripline quadrature hybrid (correspondence). IEEE Trans Microw Theory Tech 17(12):1150–1151

    Article  ADS  Google Scholar 

  • Liao SS, Sun PT, Chin NC, Peng JT (2005) A novel compact-size branch-line coupler. IEEE Microw Wirel Compon Lett 15(9):588–590

    Article  Google Scholar 

  • Lyu YP, Li B, Zhu L, Cheng CH (2021) A new compact and wideband quadrature feeding network with an integrated asymmetrical phase shifter. IET Microw Anten Prop 15(4):397–403

    Article  Google Scholar 

  • Maurya NK et al. (2023) Highly-efficient tunable dipole-driven Yagi–Uda antenna with end-fire radiation for terahertz application. Nano Commun Netw. 38

  • Maurya NK, Kumari S, Pareek P and Singh L (2023) Graphene-based frequency agile isolation enhancement mechanism for MIMO antenna in terahertz regime. Nano Communication Networks

  • Na W, Song J, Cho IH, Ryu KK and Lee MQ (2007) Ring hybrid balun with good amplitude and phase balance. IEEE MTT-S IntMicrow Sympo, 1769–1772, Honolulu, USA

  • Nedil M, Denidni TA, Talbi L (2009) CPW multilayer slot-coupled directional coupler. Electron Lett. 41(12)

  • Nemati R, Karimian S, Shahi H, Masoumi N, Safavi-Naeini S (2021) Multisection combined Gysel-Wilkinson power divider with arbitrary power division ratios. IEEE Trans Microw Theory Tech 69(3):1567–1578

    Article  ADS  Google Scholar 

  • Ou WP (1975) Design equations for an interdigitated directional coupler. IEEE Trans Microw Theory Tech 23:253–255

    Article  ADS  Google Scholar 

  • Park MJ (2009) Dual-band Wilkinson divider with coupled output port extensions. IEEE Trans Microw Theory Tech 57(9):2232–2237

    Article  ADS  Google Scholar 

  • Quirarte JLR, Starski JP (1993) Novel schiffman phase shifters. IEEE Trans Microw Theory Tech 41(1):9–14

    Article  ADS  Google Scholar 

  • Ram GC et al (2022) Tunable bandstop filter using graphene in terahertz frequency band. AEU-Int J Electron Commun 144:154047

    Article  Google Scholar 

  • Schiffman BM (1958) A new class of broad-band microwave 90-degree phase shifters. IRE Trans Microw Theory Tech 6(2):232–237

    Article  ADS  Google Scholar 

  • Shin Y, Lee B, Park MJ (2008) Dual-band Wilkinson power dividerwith shifted output ports. IEEE Microw Wireless Comp Lett 18(7):443–445

    Article  Google Scholar 

  • Sun R et al (2019) Analysis and design of wideband 90 microstrip hybrid coupler. IEEE Access 7:186409–186416

    Article  Google Scholar 

  • Sun R, Chen Q, Han R, Lu Z (2019) Analysis and design of wideband 900 microstrip hybrid coupler. IEEE Access 7:186409–186416

    Article  Google Scholar 

  • Tae HS, Lee WS, Khang ST, Oh KS and Yu JW (2013) Wide-band quadrature power divider with π-type compensation circuit. In: 2013 European Microw. Conference, 148–150, Nuremberg, Germany

  • Tang X and Mouthaan K (2009) Design of a UWB phase shifter using shunt λ/4 stubs. In: IEEE MTT-S International Microw Symp Dig. 1021–1024

  • Tang X and Mouthaan K (2009) Analysis and design of compact two-way Wilkinson power dividers using coupled lines. In: IEEE Asia Pacific Microw. Conference 2009, Singapore, 1319–1322, 7

  • Tang X, Mouthaan K (2010) Ultra-wideband quadrature power splitter. Microw Opt Tech Lett 52(12):2828–2830

    Article  Google Scholar 

  • Tseng CH, Chang CL (2008) A broadband quadrature power splitter using metamaterial transmission line. IEEE Microw Wirel Comp Lett 18(1):25–27

    Article  MathSciNet  Google Scholar 

  • Wang QH, Gokdemir T, Budimir D, Karacaoglu U, Rezazadeh AA, Robertson ID (1996) Fabrication and microwave characterisation of multilayer circuits for MMIC applications. IEEE Proc Microw Antennas Prop 143(3):225–232

    Article  Google Scholar 

  • Waugh R, LaCombe D (1972) Unfolding the lange coupler. IEEE Trans Microw Theory Tech 20:777–779

    Article  ADS  Google Scholar 

  • Wilkinson EJ (1960) An N-way power divider. IRE Trans on Microw Theory Tech 8:116–118

    Article  ADS  Google Scholar 

  • Wu Y, Liu Y, Xue Q (2010) An analytical approach for a novel coupled-line dual-band Wilkinson power divider. IEEE Trans Microw Theory Tech 59(2):286–294

    Article  ADS  Google Scholar 

  • Wu Y, Jiao L, Wang W, Liu Y, Siu YM (2015) An impedance-transforming coupled-line wilkinson power divider with port isolations and extensions. Electromagnetics 35:453–460

    Article  Google Scholar 

  • Yeung SH, Sarkar TK, Salazar-Palma M, Garcia-Lamperez A (2013) A multisection phase correcting network for broadband quadrature power splitter design. IEEE Microw Wirel Comp Lett 23(9):468–470

    Article  Google Scholar 

  • Zheng SY, Yeung SH, Chan WS, Man KF, Leung SH (2008) Improved broadband dumb-bell-shaped phase shifter using multi-section stubs. Electron Lett 44(7):478–480

    Article  ADS  Google Scholar 

  • Zysman GI, Johnson AK (1969) Coupled transmission line networks in an inhomogeneous dielectric medium. IEEE Trans Microw Theory Tech 17:753–759

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Maurya.

Appendix

Appendix

$$2Z_{0} \, = \, Z_{1e} \frac{{Z_{in1} + jZ_{1e} \tan \theta }}{{Z_{1e} + jZ_{in1} \tan \theta }}$$
(12)
$$Z_{in1 \, } = \, Z_{2e} \frac{{Z_{0} + jZ_{2e} \tan \theta }}{{Z_{2e} + jZ_{0} \tan \theta }}$$
(13)
$$\left\{ \begin{gathered} Z_{2e} = Z_{0} \sqrt {\frac{{\sqrt {1 + 8\tan^{4} \theta \, } + 1}}{{\tan^{2} \theta }}} \hfill \\ Z{}_{1e} = Z_{0} \sqrt {\frac{{\sqrt {1 + 8\tan^{4} \theta \, } - 1}}{{\tan^{2} \theta }}} \, \hfill \\ \end{gathered} \right.$$
(14)
$$Z_{in2} \, = \frac{{jR_{1} Z_{1o} \tan \theta }}{{R_{1} + 2jZ_{1o} \tan \theta }}$$
(15)
$$Z_{in3} \, = Z_{2o} \frac{{Z_{in2} + jZ_{2o} \tan \theta }}{{Z_{2o} + jZ_{in2} \tan \theta }}$$
(16)
$$Z_{0} = \frac{{R_{2} Z_{in3} }}{{R_{2} + 2Z_{in3} }}$$
(17)
$$\left\{ \begin{gathered} R_{1} = \frac{{2Z_{1O} Z_{2O} \tan^{2} \theta }}{{\sqrt {(Z_{1O} + Z_{2O} )\tan^{2} \theta [Z_{1O} \tan^{2} \theta - Z_{2O} ]} }} \hfill \\ R_{2} = \frac{{2Z_{0} (Z_{1O} + Z_{2O} )Z_{{^{{_{2O} }} }}^{2} \tan^{2} \theta }}{{(Z_{1O} Z_{{^{{_{2O} }} }}^{2} - Z_{0}^{2} Z_{1O} + Z_{{^{{_{2O} }} }}^{3} )\tan^{2} \theta + Z_{0}^{2} Z_{2O} }} + \frac{{2Z_{0}^{2} Z_{2O} \sqrt {(Z_{1O} + Z_{2O} )} \tan^{2} \theta [Z_{1O} \tan^{2} \theta - Z_{2O} ]}}{{(Z_{2O}^{2} Z_{1O} - Z_{0}^{2} Z_{1O} + Z_{{^{{_{2O} }} }}^{3} )\tan^{2} \theta + Z_{0}^{2} Z_{2O} }} \hfill \\ \end{gathered} \right.$$
(18)
$$S_{11e} = \, \frac{{\left[ {Z_{0} (2Z_{2e}^{2} - Z_{1e}^{2} )\sin^{2} \theta - Z_{0} Z_{1e} Z_{2e} \cos^{2} \theta + j(Z_{1e} + Z_{2e} )(Z_{1e} Z_{2e} - 2Z_{0}^{2} )\sin \theta \cos \theta } \right]}}{{\left[ {(3Z_{0} Z_{1e} Z_{2e} \cos^{2} \theta ) - Z_{0} (2Z_{2e}^{2} + Z_{1e}^{2} )\sin^{2} \theta + j(Z_{1e} + Z_{2e} )(Z_{1e} Z_{2e} + 2Z_{0}^{2} )\sin \theta \cos \theta } \right]}}$$
(19)
$$S_{12e} = \, \frac{{\left[ {2\sqrt 2 Z_{0} Z_{1e} Z_{2e} } \right]}}{{\left[ {(3Z_{0} Z_{1e} Z_{2e} \cos^{2} \theta ) - Z_{0} (2Z_{2e}^{2} + Z_{1e}^{2} )\sin^{2} \theta + j(Z_{1e} + Z_{2e} )(Z_{1e} Z_{2e} + 2Z_{0}^{2} )\sin \theta \cos \theta } \right]}}$$
(20)
$$S_{22e} = \, \frac{{\left[ {Z_{0} (Z_{1e}^{2} - 2Z_{2e}^{2} )\sin^{2} \theta + Z_{0} Z_{1e} Z_{2e} \cos^{2} \theta + j(Z_{1e} + Z_{2e} )(Z_{1e} Z_{2e} - 2Z_{0}^{2} )\sin \theta \cos \theta } \right]}}{{\left[ {(3Z_{0} Z_{1e} Z_{2e} \cos^{2} \theta ) - Z_{0} (2Z_{2e}^{2} + Z_{1e}^{2} )\sin^{2} \theta + j(Z_{1e} + Z_{2e} )(Z_{1e} Z_{2e} + 2Z_{0}^{2} )\sin \theta \cos \theta } \right]}}$$
(21)
$$S_{22O} = \, \frac{{\left[ \begin{gathered} (R_{1} R_{2} Z_{0} Z_{1O} - 2R_{2} Z_{1O} Z_{2O}^{2} + 4Z_{0} Z_{1O} Z_{2O}^{2} )\sin^{2} \theta - Z_{0} Z_{2O} R_{1} R_{2} \cos^{2} \theta + j(R_{1} R_{2} - 2R_{1} Z_{0} )Z_{2O}^{2} \sin \theta \cos \theta \hfill \\ + jZ_{1O} Z_{2O} (R_{1} R_{2} - 2R_{1} Z_{0} - 2R_{2} Z_{0} )\sin \theta \cos \theta \hfill \\ \end{gathered} \right]}}{{\left[ \begin{gathered} - (R_{1} R_{2} Z_{0} Z_{1O} + 2R_{2} Z_{1O} Z_{2O}^{2} + 4Z_{0} Z_{1O} Z_{2O}^{2} )\sin^{2} \theta + Z_{0} Z_{2O} R_{1} R_{2} \cos^{2} \theta + j(R_{1} R_{2} + 2R_{1} Z_{0} )Z_{2O}^{2} \sin \theta \cos \theta \hfill \\ + jZ_{1O} Z_{2O} (2R_{1} R_{2} + 2R_{1} Z_{0} + 2R_{2} Z_{0} )\sin \theta \cos \theta \hfill \\ \end{gathered} \right]}}$$
(22)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Maurya, N.K., Pareek, P. et al. Design and Analysis of a Novel Broadband Tweaked T-shaped Stub-loaded Quadrature Power-Splitter. Iran J Sci Technol Trans Electr Eng (2024). https://doi.org/10.1007/s40998-024-00711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40998-024-00711-3

Keywords

Navigation