Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The integrate profiling of single-cell and spatial transcriptome RNA-seq reveals tumor heterogeneity, therapeutic targets, and prognostic subtypes in ccRCC

Abstract

Clear-cell renal cell carcinoma (ccRCC) is the most common type of RCC; however, the intratumoral heterogeneity in ccRCC remains unclear. We first identified markers and biological features of each cell cluster using bioinformatics analysis based on single-cell and spatial transcriptome RNA-sequencing data. We found that gene copy number loss on chromosome 3p and amplification on chromosome 5q were common features in ccRCC cells. Meanwhile, NNMT and HILPDA, which are associated with the response to hypoxia and metabolism, are potential therapeutic targets for ccRCC. In addition, CD8+ exhausted T cells (LAG3+ HAVCR2+), CD8+ proliferated T cells (STMN+), and M2-like macrophages (CD68+ CD163+ APOC1+), which are closely associated with immunosuppression, played vital roles in ccRCC occurrence and development. These results were further verified by whole exome sequencing, cell line and xenograft experiments, and immunofluorescence staining. Finally, we divide patients with ccRCC into three subtypes using unsupervised cluster analysis. and generated a classifier to reproduce these subtypes using the eXtreme Gradient Boosting algorithm. Our classifier can help clinicians evaluate prognosis and design personalized treatment strategies for ccRCC. In summary, our work provides a new perspective for understanding tumor heterogeneity and will aid in the design of antitumor therapeutic strategies for ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The landscape of single cells derived from ccRCC and para-tumor tissues.
Fig. 2: Hypoxia and metabolism disorder are the molecular features in ccRCC Cancer Cells.
Fig. 3: The NNMT and HILPDA were potential therapeutic targets in ccRCC.
Fig. 4: M2 polarization of macrophage in ccRCC.
Fig. 5: The cell differentiation trajectory of tumor-driven CD8+ T cells in ccRCC.
Fig. 6: Fibroblasts and endothelial cells in ccRCC.
Fig. 7: Prognostic role of cell clusters in ccRCC.
Fig. 8: Construction and validation of a ccRCC subtype classifier.

Similar content being viewed by others

Data availability

The public datasets used and/or analyzed during the current study are available from The Mendeley Data (https://data.mendeley.com/datasets/nc9bc8dn4m/1 and https://doi.org/10.17632/g67bkbnhhg.1), Gene Expression Omnibus (GSE129253), The mRNA microarray data (E-MTAB-1980: https://www.ebi.ac.uk/arrayexpress/) and University of California Santa Cruz (UCSC) Xena browser (https://xenabrowser.net) database. The WES data produced in our study was uploaded in supplementary materials (Tables S25 and S26). The raw WES data can be obtained by asking the authors. The code of “ccRCCcluster” was published on GitHub (https://github.com/ZylRpackage2023/ccRCCcluster). The shinyAPP to Visualize scRNA-seq data stored in https://drive.google.com/file/d/15H0GNV6EwmvBrhiFsBhgpjfODDK6XOwc/view?usp=sharing.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Xu P, Zhang S, Cheng J, Cao B, Huang J, Li Y, et al. Prognostic value of tumour contour irregularity on surgical strategies for T1bN0M0 renal cell carcinoma: a multi-institutional study. Eur J Radiol. 2023;159:110665.

    Article  PubMed  Google Scholar 

  3. Porta C, Cosmai L, Leibovich BC, Powles T, Gallieni M, Bex A. The adjuvant treatment of kidney cancer: a multidisciplinary outlook. Nat Rev Nephrol. 2019;15:423–33.

    Article  PubMed  Google Scholar 

  4. Grimm M-O, Bex A, De Santis M, Ljungberg B, Catto JWF, Rouprêt M, et al. Safe use of immune checkpoint inhibitors in the multidisciplinary management of urological cancer: the European Association of Urology Position in 2019. Eur Urol. 2019;76:368–80.

    Article  CAS  PubMed  Google Scholar 

  5. Kotecha RR, Motzer RJ, Voss MH. Towards individualized therapy for metastatic renal cell carcinoma. Nat Rev Clin Oncol. 2019;16:621–33.

    Article  CAS  PubMed  Google Scholar 

  6. Golkaram M, Kuo F, Gupta S, Carlo MI, Salmans ML, Vijayaraghavan R, et al. Spatiotemporal evolution of the clear cell renal cell carcinoma microenvironment links intra-tumoral heterogeneity to immune escape. Genome Med. 2022;14:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vegliante R, Pastushenko I, Blanpain C. Deciphering functional tumor states at single-cell resolution. EMBO J. 2022;41:e109221.

    Article  CAS  PubMed  Google Scholar 

  8. Hu J, Chen Z, Bao L, Zhou L, Hou Y, Liu L, et al. Single-cell transcriptome analysis reveals intratumoral heterogeneity in ccRCC, which results in different clinical outcomes. Mol Ther. 2020;28:1658–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borcherding N, Vishwakarma A, Voigt AP, Bellizzi A, Kaplan J, Nepple K, et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun Biol. 2021;4:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Narayanan SP, Mannan R, Raskind G, Wang X, Vats P, et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc Natl Acad Sci USA. 2021;118:e2103240118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell. 2021;184:2988–3005.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li R, Ferdinand JR, Loudon KW, Bowyer GS, Laidlaw S, Muyas F, et al. Mapping single-cell transcriptomes in the intra-tumoral and associated territories of kidney cancer. Cancer Cell. 2022;40:1583–99.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45:860–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, et al. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol. 2020;16:e1007657.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

  16. Hu C, Li T, Xu Y, Zhang X, Li F, Bai J, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2022;51:D870–6.

    Article  PubMed Central  Google Scholar 

  17. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017;355:eaai8478.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611–24.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14:979–82. https://doi.org/10.1038/nmeth.4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jt L, We J, Hs P, Ae J, Jd S. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article  Google Scholar 

  28. Rüetschi U, Rymo L, Lindstedt S. Human 4-hydroxyphenylpyruvate dioxygenase gene (HPD). Genomics. 1997;44:292–9.

    Article  PubMed  Google Scholar 

  29. Xu D, Wang Z, Xia Y, Shao F, Xia W, Wei Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature. 2020;580:530–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Wang W, Yang C, Wang T, Deng H. Complex roles of nicotinamide N-methyltransferase in cancer progression. Cell Death Dis. 2022;13:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML, Warnecke C, et al. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab. 2021;47:101168.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol. 2001;91:1017–28.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao S, Li B, Zhao R, Pan Z, Zhang S, Qiu W, et al. Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway. Oncogene. 2023;42:138–53.

    Article  CAS  PubMed  Google Scholar 

  34. Ma Y, Chen G, Yi J, Li Q, Tan Z, Fan W, et al. IRX3 plays an important role in the pathogenesis of metabolic-associated fatty liver disease by regulating hepatic lipid metabolism. Front Endocrinol. 2022;13:895593.

    Article  Google Scholar 

  35. Eggink LL, Roby KF, Cote R, Kenneth Hoober J. An innovative immunotherapeutic strategy for ovarian cancer: CLEC10A and glycomimetic peptides. J Immunother Cancer. 2018;6:28.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sen P, Helmke A, Liao CM, Sörensen-Zender I, Rong S, Bräsen J-H, et al. SerpinB2 regulates immune response in kidney injury and aging. J Am Soc Nephrol. 2020;31:983–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. You Y, Tian Z, Du Z, Wu K, Xu G, Dai M, et al. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res. 2022;41:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khosravi M, Najafi M, Amirfarhangi A, Karimi M, Fattahi F, Shabani M. The increase of pFAK and THBS1 protein and gene expression levels in vascular smooth muscle cells by histamine-treated M1 macrophages. Iran J Allergy Asthma Immunol. 2019;18:72–9.

    PubMed  Google Scholar 

  39. Clarke R, Von Ende A, Schmidt LE, Yin X, Hill M, Hughes AD, et al. Apolipoprotein proteomics for residual lipid-related risk in coronary heart disease. Circ Res. 2023;132:452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia Y, Zhang B, Zhang C, Kwong DL-W, Chang Z, Li S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in esophageal squamous cell carcinoma. Adv Sci. 2023;10:e2204565.

    Article  Google Scholar 

  41. Ren L, Yi J, Yang Y, Li W, Zheng X, Liu J, et al. Systematic pan-cancer analysis identifies APOC1 as an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis. Pharm Res. 2022;183:106376.

    Article  CAS  Google Scholar 

  42. Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 2022;56:102463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Low-Kam C, Rhainds D, Lo KS, Barhdadi A, Boulé M, Alem S, et al. Variants at the APOE /C1/C2/C4 locus modulate cholesterol efflux capacity independently of high-density lipoprotein cholesterol. J Am Heart Assoc. 2018;7:e009545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6:137–43.

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Qin J, Lan L, Li N, Wang C, He P, et al. M-CSF cooperating with NFκB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biol Ther. 2014;15:99–107.

    Article  CAS  PubMed  Google Scholar 

  46. Yao Y, Wang Y, Zhang Z, He L, Zhu J, Zhang M, et al. Chop deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production. Mol Ther. 2016;24:915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Zhu J, Zhang L, Zhang Z, He L, Mou Y, et al. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor α positive feedback loop in M2 macrophages. J Allergy Clin Immunol. 2017;140:1550–61.e8.

    Article  CAS  PubMed  Google Scholar 

  48. Bories G, Colin S, Vanhoutte J, Derudas B, Copin C, Fanchon M, et al. Liver X receptor activation stimulates iron export in human alternative macrophages. Circ Res. 2013;113:1196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiao Z, Mayer AT, Nobashi TW, Gambhir SS. ICOS is an indicator of T-cell-mediated response to cancer immunotherapy. Cancer Res. 2020;80:3023–32.

    Article  CAS  PubMed  Google Scholar 

  50. Sun Q, Zhao X, Li R, Liu D, Pan B, Xie B, et al. STAT3 regulates CD8+ T cell differentiation and functions in cancer and acute infection. J Exp Med. 2023;220:e20220686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noviello M, Manfredi F, Ruggiero E, Perini T, Oliveira G, Cortesi F, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun. 2019;10:1065.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  52. Kim GH, Won JE, Byeon Y, Kim MG, Wi TI, Lee JM, et al. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Deliv. 2018;25:1394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou Z, Christofidou-Solomidou M, Garlanda C, DeLisser HM. Antibody against murine PECAM-1 inhibits tumor angiogenesis in mice. Angiogenesis. 1999;3:181–8.

    Article  CAS  PubMed  Google Scholar 

  54. Fukumoto M, Kondo K, Uni K, Ishiguro T, Hayashi M, Ueda S, et al. Tip-cell behavior is regulated by transcription factor FoxO1 under hypoxic conditions in developing mouse retinas. Angiogenesis. 2018;21:203–14.

    Article  CAS  PubMed  Google Scholar 

  55. Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, et al. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun. 2022;13:2080.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Y-Q, Xu Z-M, Wang X-L, Zheng J-K, Du Q, Yang J-X, et al. LncRNA FOXC2-AS1 regulated proliferation and apoptosis of vascular smooth muscle cell through targeting miR-1253/FOXF1 axis in atherosclerosis. Eur Rev Med Pharm Sci. 2020;24:3302–14.

    Google Scholar 

  57. Bolte C, Ustiyan V, Ren X, Dunn AW, Pradhan A, Wang G, et al. Nanoparticle delivery of proangiogenic transcription factors into the neonatal circulation inhibits alveolar simplification caused by hyperoxia. Am J Respir Crit Care Med. 2020;202:100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toshner M, Dunmore BJ, McKinney EF, Southwood M, Caruso P, Upton PD, et al. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS ONE. 2014;9:e91334.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Iordache F, Constantinescu A, Andrei E, Maniu H. Histone acetylation regulates the expression of HoxD9 transcription factor in endothelial progenitor cells. Rom J Morphol Embryol. 2015;56:107–13.

    PubMed  Google Scholar 

  60. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–68.

    Article  CAS  PubMed  Google Scholar 

  61. Drake CG, Stein MN. The immunobiology of kidney cancer. J Clin Oncol. JCO2018792648 (2018).

  62. Wang F, Long J, Li L, Wu Z-X, Da T-T, Wang X-Q, et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci Adv. 2023;9:eadf5464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shi Q, Xu R, Song G, Lu H, Xue D, He X, et al. GATA3 suppresses human fibroblasts-induced metastasis of clear cell renal cell carcinoma via an anti-IL6/STAT3 mechanism. Cancer Gene Ther. 2020;27:726–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the investigators for participating in the present study. This work was supported by the Ministry of Science and Technology of People’s Republic of China (2023YFC2306003), the National Natural Science Foundation of China (No. 81972652 and No. 32270635) and the National Natural Science Foundation of Beijing Municipality (No. 7232082).

Author information

Authors and Affiliations

Authors

Contributions

YZ, XH, and MY designed and conducted the study. YZ, XH, and MY drafted the manuscript. XW, YY, and LZ revised the manuscript. YZ, XH, and MY performed the data analysis. YZ, XH, MY, MZ, and LZ conduct experimental operations. YZ, XH, and MY contributed equally to this work. XW, YY, and LZ contributed equally to this work. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yong Yan, Liyun Zhang or Xi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The studies involving human participants were reviewed and approved by the ethics committee of Shanghai OUTDO Biotech Corporation Limited and Shanxi Bethune Hospital. The patients/participants provided their written informed consent to participate in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, X., Yu, M. et al. The integrate profiling of single-cell and spatial transcriptome RNA-seq reveals tumor heterogeneity, therapeutic targets, and prognostic subtypes in ccRCC. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00755-x

Search

Quick links