Skip to main content
Log in

Structural transitions in interacting lattice systems

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider two-dimensional systems of point particles located on rectangular lattices and interacting via pairwise potentials. The goal of this paper is to investigate the phase transitions (and their nature) at fixed density for the minimal energy of such systems. The 2D rectangle lattices we consider have an elementary cell of sides a and b, the aspect ratio is defined as \(\Delta =b/a\) and the inverse particle density \(A = a b\); therefore, the “symmetric” state with \(\Delta =1\) corresponds to the square lattice and the “non-symmetric” state to the rectangular lattice with \(\Delta \ne 1\). For certain types of the interaction potential, by changing continuously the particle density, such lattice systems undertake at a specific value of the (inverse) particle density \(A^*\) a structural transition from the symmetric to the non-symmetric state. The structural transition can be either of first order (\(\Delta \) unstick from its symmetric value \(\Delta =1\) discontinuously) or of second order (\(\Delta \) unstick from \(\Delta =1\) continuously); the first and second-order phase transitions are separated by the so-called tricritical point. We develop a general theory on how to determine the exact values of the transition densities and the location of the tricritical point. The general theory is applied to the double Yukawa and Yukawa–Coulomb potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bausch, R.: Ginzburg criterion for tricritical points. Z. Physik 254, 81–88 (1972)

    Article  Google Scholar 

  2. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  MathSciNet  Google Scholar 

  3. Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in the whole plane: Lennard-Jones and Thomas-Fermi cases. Commun. Contemp. Math. 17, 1450049 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48, 3236–3269 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bétermin, L.: Local variational study of 2D lattice energies and application to Lennard-Jones type interactions. Nonlinearity 31, 3973–4005 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bétermin, L., Petrache, M.: Optimal and non-optimal lattices for non-completely monotone interaction potentials. Anal. Math. Phys. 9, 2033–2073 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bétermin, L.: Theta functions and optimal lattices for a grid cells model. SIAM J. Appl. Math. 81, 1931–1953 (2021)

    Article  MathSciNet  Google Scholar 

  8. Bétermin, L., De Luca, L., Petrache, M.: Crystallization to the square lattice for a two-body potential. Arch. Ration. Mech. Anal. 240, 987–1053 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bétermin, L., Friedrich, M., Stefanelli, U.: Lattice ground states for embedded-atom models in 2D and 3D. Lett. Math. Phys. 111, 107 (2021)

    Article  MathSciNet  Google Scholar 

  10. Bétermin, L.: Effect of periodic arrays of defects on lattice energy minimizers. Ann. Henri Poincaré 22, 2995–3023 (2021)

    Article  MathSciNet  Google Scholar 

  11. Bétermin, L., Šamaj, L., Travěnec, I.: Three-dimensional lattice ground states for Riesz and Lennard-Jones type energies. Stud. Appl. Math. 150, 69–91 (2023)

    Article  MathSciNet  Google Scholar 

  12. Bétermin, L.: Optimality of the triangular lattice for Lennard-Jones type lattice energies: a computer assisted method. J. Phys. A: Math. Theor. 56, 145204 (2023)

    Article  MathSciNet  Google Scholar 

  13. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    Article  MathSciNet  Google Scholar 

  14. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2007)

    Article  MathSciNet  Google Scholar 

  15. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185, 1017–1033 (2017)

    Article  MathSciNet  Google Scholar 

  16. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: Universal optimality of the \(E_8\) and Leech lattices and interpolation formulas. Ann. Math. 196, 983–1082 (2022)

    Article  MathSciNet  Google Scholar 

  17. Faulhuber, M., Steinerberger, S.: Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl. 445, 407–422 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, London (2000)

    Google Scholar 

  19. Kaplan, I.G.: Intermolecular Interactions: Physical Picture, Computational Methods, Model Potentials. Wiley, New York (2006)

    Book  Google Scholar 

  20. Landau, L.D.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937)

    Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Statistical Physics, vol. 5, 3rd edn. Elsevier, Amsterdam (1980)

    Google Scholar 

  22. Lewin, M.: Coulomb and Riesz gases: The known and the unknown. J. Math. Phys. 63, 061101 (2022)

    Article  MathSciNet  Google Scholar 

  23. Luo, S., Ren, X., Wei, J.: Non-hexagonal lattices from a two species interacting system. SIAM J. Math. Anal. 52, 1903–1942 (2020)

    Article  MathSciNet  Google Scholar 

  24. Luo, S., Wei, J.: On minima of sum of theta functions and Mueller-Ho conjecture. Arch. Ration. Mech. Anal. 243, 139–199 (2022)

    Article  MathSciNet  Google Scholar 

  25. Luo, S., Wei, J.: On minima of difference of Epstein zeta functions and exact solutions to Lennard-Jones lattice energy, preprint. arXiv:2212.10727 (2022)

  26. Luo, S., Wei, J.: On lattice hexagonal crystallization for non-monotone potentials, preprint. arXiv:2302.05042 (2023)

  27. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    Article  MathSciNet  Google Scholar 

  28. Montgomery, H.L.: Minimal theta functions. Glasg. Math. J. 30, 75–85 (1988)

    Article  MathSciNet  Google Scholar 

  29. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635–743 (2012)

    Article  MathSciNet  Google Scholar 

  30. Šamaj, L., Bajnok, Z.: Introduction to the Statistical Physics of Integrable Many-body Systems. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  31. Tolédano, J.C., Tolédano, P.: The Landau Theory of Phase Transitions. World Scientific, Singapore (1987)

    Book  Google Scholar 

  32. Travěnec, I., Šamaj, L.: Two-dimensional Wigner crystals of classical Lennard-Jones particles. J. Phys. A: Math. Theor. 52, 205002 (2019)

  33. Travěnec, I., Šamaj, L.: Generation of off-critical zeros for hypercubic Epstein zeta functions. Appl. Math. Comput. 413, 126611 (2022)

    MathSciNet  Google Scholar 

  34. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185, 991–1015 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The support received from the project EXSES APVV-20-0150 and VEGA Grant No. 2/0089/24 and is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

LB, LS and IT wrote the main manuscript text. LS and IT prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Laurent Bétermin.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétermin, L., Šamaj, L. & Travěnec, I. Structural transitions in interacting lattice systems. Anal.Math.Phys. 14, 27 (2024). https://doi.org/10.1007/s13324-024-00888-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00888-0

Keywords

Mathematics Subject Classification

Navigation