Skip to main content
Log in

Local Structure of Amorphous (GeTe)x(Sb2Te3) Films

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

By the method of Mössbauer spectroscopy on the isotope 119Sn, it was shown that tetravalent germanium atoms in amorphous films (GeTe)x(Sb2Te3) (where x = 0.5, 1, 2, 3) form a tetrahedral system of chemical bonds, and in their local environment there are mainly tellurium atoms. In crystalline films (GeTe)x(Sb2Te3) is divalent hexoordinated germanium at positions 4 b of the NaCl type crystal lattice. By the method of Mössbauer spectroscopy on 121Sb and 125Te atoms, it was shown that the amorphization of (GeTe)x(Sb2Te3) films does not change the local environment of antimony and tellurium atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. D. Lencer, M. Salinga, M. Wuttig. Adv. Mater., 23, 2030 (2011). https://doi.org/10.1002/adma.201004255

    Article  CAS  PubMed  Google Scholar 

  2. C. Qiao, Y. R. Guo, J. J. Wang, H. Shen, S. Y. Wang, Y. X. Zheng, R. J. Zhang, L. Y. Chen, C. Z. Wang, K. M. Ho. J. Alloys and Compounds, 774, 748 (2019). https://doi.org/10.1063/5.0067157

    Article  CAS  Google Scholar 

  3. B. Zhang, X. P. Wang, Z. J. Shen, X. B. Li, C. S. Wang, Y. J. Chen, J. X. Li, J. X. Zhang, Z. Zhang, S. B. Zhang, X. D. Han. Sci. Rep., 6, 25453 (2016). https://doi.org/10.1038/srep25453

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xue-Peng Wang, Xian-Bin Li, Nian-Ke Chen, Qi-Dai Chen, Xiao-Dong Han, Shengbai Zhang, Hong-Bo Sun. Acta Mater., 136, 242 (2017). https://doi.org/10.1016/j.actamat.2017.07.006&partner

    Article  ADS  CAS  Google Scholar 

  5. Z. Sun, S. Kyrsta, D. Music, R. Ahuja, J.M. Schneider. Solid State Commun., 143, 240 (2007). https://doi.org/10.1016/j.ssc.2007.05.018

    Article  ADS  CAS  Google Scholar 

  6. P. Urban. Cryst. Eng. Comm., 15, 4823 (2013). https://doi.org/10.1039/C3CE26956F

    Article  Google Scholar 

  7. A. Lotnyk, U. Ross, S. Bernütz, E. Thelander, B. Rauschenbach. Sci. Rep., 6, 26724 (2016). https://doi.org/10.1038/srep26724

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Zheng, Y. Wang, T. Xin, Y. Cheng, R. Huang, P. Liu, M. Luo, Z. Zhang, Z. Song, S. Feng. Commun. Chem., 2, 1 (2019). https://doi.org/10.1038/s42004-019-0114-7

    Article  CAS  Google Scholar 

  9. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominga, T. Uruga. Nat. Mater., 3, 703 (2004). https://doi.org/10.1038/nmat1215

    Article  ADS  CAS  PubMed  Google Scholar 

  10. D. A. Baker, M. A. Paesler, G. Lucovsky, S. C. Agarwal, P. C. Taylor. Phys. Rev. Lett., 96, 255501 (2006). https://doi.org/10.1103/PhysRevLett.96.255501

  11. D. A. Baker, M. A. Paesler, G. Lucovsky, S. C. Agarwal, P. C. Taylor, J. Non-Cryst. Solids, 352, 1621 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.079

    Article  ADS  CAS  Google Scholar 

  12. P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, M. A. Webb. Phys. Rev. B, 77, 035202 (2008). https://doi.org/10.1103/PhysRevB.77.035202

  13. Z. Sun, J. Zhou, R. Ahuja. Phys. Rev. Lett., 96, 055507 (2006). https://doi.org/10.1103/PhysRevLett.96.055507

  14. M. Jung, H. J. Shin, K. Kim, J. S. Noh, J. Chung. Appl. Phys. Lett., 89, 043503 (2006). https://doi.org/10.1063/1.223621689

  15. J. R. Stellhorn, S. Hosokawa, S. Kohara. Analytical Sci., 36, 5 (2020). https://doi.org/10.2116/analsci.19SAR02

    Article  CAS  Google Scholar 

  16. A. V. Marchenko, P. P. Seregin, E. I. Terukov, K. B. Shakhovich. Semiconductors, 53, 711 (2019). https://doi.org/10.1134/S1063782619050166

    Article  ADS  CAS  Google Scholar 

  17. P. P. Seregin, V. P. Sivkov, F. S. Nasredinov, L. N. Vasilev, Yu. V. Krylnikov, Y. P. Kostikov. Phys. Stat. Sol. (a), 39, 437 (1977).

    Article  ADS  CAS  Google Scholar 

  18. G. A. Bordovsky, A. V. Marchenko, F. S. Nasredinov, Y. A. Petrushin, P. P. Seregin. FKhS, 47, 179 (2021). [G. A. Bordovskii, A. V. Marchenko, F. S. Nasredinov, Ya. A. Petrushin, P. P. Seregin. Glass Phys. Chem., 47, 166 (1921). https://doi.org/10.1134/S1087659621020036] https://doi.org/10.31857/S0132665121020037

    Article  Google Scholar 

  19. A. V. Marchenko, E. I. Terukov, F. S. Nasredinov, Y. A. Petrushin, P. P. Seregin. FTP, 55, 3 (2021). [A. V. Marchenko, E. I. Terukov, F. S. Nasredinov, Ya. A. Petrushin. Semiconductors, 55, 1 (1921). https://doi.org/10.1134/S1063782621010127] https://doi.org/10.21883/TP.2022.11.55175.186-22

    Article  Google Scholar 

  20. F. Ledda, C. Muntoni, A. Rucci, S. Serci, G. Alonzo, M. Consiglio, T. Bressani. Hyperfine Interactions, 41, 591, (1988).

    Article  ADS  CAS  Google Scholar 

  21. S. Rigamonti, G. Petrini. Phys. Stat. Sol. (a), 41, 591 (1970).

    Article  ADS  CAS  Google Scholar 

  22. G. A. Bordovsky, E. I. Terukov, N. I. Anisimova, A. V. Marchenko, P. P. Seregin. FTP 43, 1232 (2009). [G. A. Bordovskii, E. I. Terukov., N. I. Anisimova, A. V. Marchenko, P. P. Seregin. Semiconductors, 43, 1193 (2009). https://doi.org/10.1134/S1063782609090164]

    Google Scholar 

  23. M. Micoulaut, K. Gunasekera, S. Ravindren, P. Boolchand. Phys. Rev. B, 90, 094207 (2014). https://doi.org/10.1103/PhysRevB.90.094207

  24. P. Boolchand, B. B. Triplett, S. S. Hannas. Mössbauer Effect Methodology (New England Nuclear Corporation, 1974).

    Google Scholar 

  25. M. K. Gauer, I. Dezsi, U. Gonser, G. Langouche, H. Ruppersberg. J. Non-Cryst. Solids, 101, 31 (1988). https://doi.org/10.1016/0022-3093(88)90365-1

    Article  ADS  CAS  Google Scholar 

  26. M. K. Gauer, I. Dezsi, U. Gonser, G. Langouche, H. Ruppersberg. J. Non-Cryst. Solids, 109, 247 (1989). https://doi.org/10.1016/0022-3093(88)90365-1

    Article  ADS  CAS  Google Scholar 

  27. R. Mantovan, R. Fallica, A. Mokhles Gerami, T. E. Molhol, C. Wiemer, M. Longo, H. P. Gunnlaugsson, K. Johnston, H. Masenda, D. Naidoo, M. Ncube, K. Bharuth-Ram, M. Fanciulli, H. P. Gislason, G. Langouche, S. Glafsson, G. Weyer. Scientific Rep., 7, 8234 (2017). https://doi.org/10.1038/s41598-017-08275-5

    Article  ADS  CAS  Google Scholar 

  28. R. W. Olesinski, G. J. Abbaschian. Bulletin of Alloy Phase Diagrams, 5, 265 (1984).

    Article  CAS  Google Scholar 

  29. T. Chattopadhyay, J. X. Boucherle, H. G. von Schnering. J. Phys. C, 20, 1431 (1987).

    Article  ADS  CAS  Google Scholar 

  30. K. Bobokhuzhaev, A. Marchenko, P. Seregin. Structural and Anti-Structural Defects in Chalcogenide Semiconductors. Mössbauer Spectroscopy (LAP Lambert Academic Publishing, 2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Seregin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, A.V., Terukov, E.I., Nasredinov, F.S. et al. Local Structure of Amorphous (GeTe)x(Sb2Te3) Films. Tech. Phys. 68 (Suppl 1), S88–S95 (2023). https://doi.org/10.1134/S1063784223090104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223090104

Keywords:

Navigation