Skip to main content
Log in

ZnxFe3 – xO4 (0 \( \leqslant \) x \( \leqslant \) 1.0) Magnetic Nanoparticles Functionalized with Polyacrylic Acid (PAA)

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Studies of the properties of ZnxFe3 – xO4 (x = 0, 0.25, 0.5, 0.75, 1.0) magnetic nanoparticles synthesized by a modified hydrothermal method are presented in comparison with the properties of the same nanoparticles stabilized with polyacrylic acid ZnxFe3 – xO4@PAA. The structure, size, morphology, and magnetic properties of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), physical properties measurements (PPMS), and Mössbauer spectroscopy. The synthesized nanoparticles are single-phase, without additional impurities, have a narrow size distribution and are in the superparamagnetic phase. From the (XRD) measurements, it was found that with an increase in the Zn content from x = 0 to x = 1.0, the sizes of the nanoparticles were increasing from 17 to 33 nm. Analysis of the Mössbauer spectroscopy data showed that when doped with Zn ions from x = 0 to x =1.0, the sizes of the nanoparticles were decreasing from 15 to 5 nm. The results of the Mössbauer studies showed that both ZnxFe3 – xO4 and ZnxFe3 – xO4@PAA has a core/shell type structure in which the core is magnetically ordered, whereas the shell does not have magnetic ordering. Mössbauer studies indicate that the coating of citric acid particles leads to their isolation from each other, reducing or eliminating interactions between particles, reducing the thickness of the paramagnetic shell, and thereby increasing the diameter of the core, which is in a magnetically ordered state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. S. A. Novopashin, M. A. Serebryakova, S. Ya. Khmel. Teplofizika i aeromekhanika, 22, (411), (2015) (in Russian).

  2. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles (pat. 3215572A USA. Papell S.S.; Applic. 09.10.1963; Publ. 02.11.1965).

  3. R. E. Rosensweig, R. Kaiser. NTIS Rep. No. NASW-1219; NASA Rep. NASACR-91684. NASA Office of Advanced Research and Technology (Washington, DC, 1967), 238 p.

  4. M. A. A. Kerroum, C. Iacovita, W. Baaziz, D. Ihiawakrim, G. Rogez, M. Benaissa, C. M. Lucaciu, O. Ersen. Int. J. Mol. Sci., 21, 7775 (2020). https://doi.org/10.3390/ijms21207775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. A. Ramos-Guivar, E. O. Lopez, J.-M. Greneche, F. J. Litterst, E. C. Passamani. Appl. Surf. Sci., 538, 148021 (2021).https://doi.org/10.1016/j.jmmm.2022.169241

  6. W. Wang, J. V. I. Timonen, A. Carlson, D.-M. Drotlef, C. T. Zhang, S. Kolle, A. Grinthal, T.-S. Wong, B. Hatton, S. H. Kang, S. Kennedy, J. Chi, R. T. Blough, M. Sitti, L. Mahadevan. J. Aizenberg. Nature, 559, 77 (2018). https://doi.org/10.1038/s41586-018-0250-8

    Article  CAS  Google Scholar 

  7. M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K. N. Trohidou, D. Fiorani, D. Peddis. Nanomaterials, 11, 1787 (2021). https://doi.org/10.3390/nano11071787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E. M. Materon, C. M. Miyazaki, O. Carr, N. Joshi, P. H. S. Picciani, C. J. Dalmaschio, F. Davis, F. M. Shimizu. Appl. Surf. Sci. Adv., 6, 100163 (2021). https://doi.org/10.3390/bios12080554

  9. M. G. M. Schneider, M. J. Martin, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, M. Nedyalkova. Pharmaceutics, 14, 204 (2022). https://doi.org/10.3390/pharmaceutics14010204

    Article  CAS  Google Scholar 

  10. I. M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C. V. V. M. Gopi. Magneto chemistry, 5, 67 (2019). https://doi.org/10.3390/magnetochemistry5040067

  11. J. Majeed, L. Pradhan, R. S. Ningthoujam, R. K. Vatsa, D. Bahadur, A. K. Tyagi. Colloids Surf. B, 122, 396 (2014). https://doi.org/10.1016/j.colsurfb.2014.07.019

    Article  CAS  Google Scholar 

  12. M. Nedyalkova, B. Donkova, J. Romanova, G. Tzvetkov, S. Madurga, V. Simeonov. Adv. Colloid Interface Sci., 249, 192 (2017). https://doi.org/10.1016/j.cis.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  13. Size Effects in Nanostructures: Basics and Applications, ed. by V. Kuncser, L. Miu (Springer-Verlag, Berlin-Heidelberg, 2014).

    Google Scholar 

  14. V. Sepelak. Ann. Chim. Sci. Mat., 27, 61 (2002). https://doi.org/10.1016/S0151-9107(02)90015-2

    Article  CAS  Google Scholar 

  15. J. Bennet, R. Tholkappiyan, K. Vishista, N. V. Jaya, F. Hamed. Appl. Surf. Sci., 383, 113 (2016). https://doi.org/10.1016/j.apsusc.2016.04.177

    Article  ADS  CAS  Google Scholar 

  16. T. Vigneswari, P. Rajib. J. Mol. Struct., 424, 267 (2017). https://doi.org/10.1016/j.molstruc.2016.07.116

    Article  CAS  Google Scholar 

  17. F. Ozel, O. Karaagac, E. Tokay, F. Kockar, H. Kockar. J. Magn. Magn. Mater., 474, 654 (2019). https://doi.org/10.1016/j.jmmm.2018.11.025

    Article  ADS  CAS  Google Scholar 

  18. H. Mahajan, S. K. Godara, A. K. Srivastava. J. Alloys Compd., 896, 162966 (2021). https://doi.org/10.1016/j.jallcom.2021.162966

  19. E. A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, E. Plazaola, F. J. Teran. Appl. Phys. Rev., 2, 041302 (2015). https://doi.org/10.1063/1.4935688

  20. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application. A volume in Metal Oxides, ed. by M. Mahmoudi, S. Laurent (Elsevier, 2018).

    Google Scholar 

  21. P. D. Shima, J. Philip, B. Raj. J. Phys. Chem. C, 114, 18825 (2010). https://doi.org/10.1021/jp107447q

    Article  CAS  Google Scholar 

  22. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience (Editura Academiei Romane, Bucharest, 2013), v. 197.

    Google Scholar 

  23. M. A. Daniele, M. L. Shaughnessy, R. Roeder, A. Childress, Y. P. Bandera, S. Foulger. ACS Nano, 7, 203 (2012). https://doi.org/10.1021/nn3037368

    Article  CAS  PubMed  Google Scholar 

  24. C. Liu, P. Huang. Soil Sci. Soc. Am. J., 63, 65 (1999). https://doi.org/10.2136/sssaj1999.03615995006300010011x

    Article  ADS  CAS  Google Scholar 

  25. A. Jedlovszky-Hajd, F. B. Bombelli, M. P. Monopoli, D. Tombacz, K. A. Dawson. Langmuir, 28, 14983 (2012). https://doi.org/10.1021/la302446h

    Article  CAS  Google Scholar 

  26. M. Nandy, B. B. Lahiri, C. H. Yadhukrishna, J. Philip. J. Mol. Liq., 336, 116332 (2021). https://doi.org/10.1016/j.molliq.2021.116332

  27. T. J. Daou, G. Pourroy, S. Begin-Colin, J. M. Greneche, C. Ulhaq-Bouillet, P. Legar, P. Bernhardt, C. Leuvrey, E. Rogez. Chem. Mater., 18, 4399 (2006). https://doi.org/10.1021/cm060805r

    Article  CAS  Google Scholar 

  28. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen. J. Magn. Magn. Mater., 308, 210 (2007).https://doi.org/10.1016/j.jmmm.2006.05.017

  29. V. G. Semenov, V. V. Panchuk. Private message.

  30. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. (Wiley, N.Y., 2009), p. 424.

    Google Scholar 

  31. X. Wu, Z. Ding, W. Wang, N. Song, S. Khaimanov, N. Tsidaeva. Powder Technol., 295, 59 (2016). https://doi.org/10.1016/j.powtec.2016.03.033

    Article  CAS  Google Scholar 

  32. K. Raja, S. Verma, S. Karmakar, S. Kar, S. J. Das, K. S. Bartwal. Cryst. Res. Technol., 46, 497 (2011). https://doi.org/10.1002/crat.201100105

    Article  CAS  Google Scholar 

  33. B. D. Cullity. Elements of X-ray Diffraction (Addison Wesley Publishing Company, USA, 1978).

    Google Scholar 

  34. Y. Tan, Z. Zhuang, Q. Peng, Y. Li. Chem. Mater., 20, 5029 (2008). https://doi.org/10.1021/cm801082p

    Article  CAS  Google Scholar 

  35. M. Abareshi, E. K. Goharshadi, S. Mojtaba Zebarjad, H. Khandan Fadafan, A. Youssefi. J. Magn. Magn. Mater., 322, 3895 (2010). https://doi.org/10.1016/j.jmmm.2010.08.016

    Article  ADS  CAS  Google Scholar 

  36. J. Liu, Y. Bin, M. Matsuo. J. Phys. Chem. C, 116, 134 (2012). https://doi.org/10.1021/jp207354s

    Article  CAS  Google Scholar 

  37. K. Praveena, K. Sadhana, H. S. Virk. Solid State Phenom., 232, 45 (2015). https://doi.org/10.4028/www.scientific.net/SSP.232.45

    Article  Google Scholar 

  38. M. Srivastava, S. K. Alla, S. S. Meena, N. Gupta, R. K. Mandal, N. K. Prasad. New J. Chem., 42, 07144 (2018). https://doi.org/10.1039/C8NJ00547H

    Article  CAS  Google Scholar 

  39. M. Abbas, B. P. Rao, S. M. Naga, M. Takahashi, C. Kim. Ceram. Int., 39, 7605 (2013). https://doi.org/10.1016/j.ceramint.2013.03.01

    Article  CAS  Google Scholar 

  40. M. S. Angotzi, A. Musinu, V. Mameli, A. Ardu, C. Cara, D. Niznansky, H. L. Xin, C. Cannas. ACS Nano, 11, 7889 (2017). https://doi.org/10.1021/acsnano.7b02349

    Article  CAS  Google Scholar 

  41. Mossbauer Spectroscopy Applied to Magnetism and Materials Science, ed. by G. J. Long, F. Grandjean (Springer Science+Business Media, NY., 1993), v. 1, 479 p.

  42. B. Fultz. Mössbauer Spectrometry. Characterization of Materials (John Wiley & Sons, Inc., Hoboken, N.J., 2011).

    Google Scholar 

  43. E. Umut, M. Coşkun, H. Güngüneş, V. Dupuis, A. S. Kamzin. J. Supercond. Nov. Magn., 34, 913 (2021). https://doi.org/10.1007/s10948-020-05800-y

  44. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, I. A. Al-Omari. FTT, 62, 1715 (2020) (in Russian). https://doi.org/10.21883/FTT.2020.10.49928.056

  45. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, I. A. Al-Omari. FTT, 62, 1919 (2020) (in Russian). https://doi.org/10.21883/FTT.2020.11.50071.062

  46. Magnetic Properties of Fine Particles, ed. by J. L. Dormann, D. Fiorani (Elsevier, 2012), 430 p.

    Google Scholar 

  47. E. C. Stoner, E. Wohlfarth. Phil. Tr. Roy. Soc. Lond. Ser. A, 240, 599 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  ADS  Google Scholar 

  48. A. S. Kamzin, I. M. Obaidat, V. S. Kozlov, E. V. Voronina, V. Narayanaswamy, I. A. Al-Omari. FTT, 63, 807 (2021) (in Russian). https://doi.org/10.21883/FTT.2021.06.50944.004

  49. A. S. Kamzin, I. M. Obaidat, V. S. Kozlov, E. V. Voronina, V. Narayanaswamy, I. A. Al-Omari. FTT, 63, 900 (2021) (in Russian). https://doi.org/10.21883/FTT.2021.07.51040.039

  50. R. Gabbasov, M. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, A. Lomov, A. Wang, V. Panchenko. J. Magn. Magn. Mater., 380, 111 (2015). https://doi.org/10.1016/j.jmmm.2014.11.032

    Article  ADS  CAS  Google Scholar 

  51. M. A. Chuev. Pisma v ZhETF, 98, 523 (2013). (in Russian) [M. A. Chuev, JETP Lett., 98, 465 (2013). https://doi.org/10.7868/S0370274X1320006X]

    Google Scholar 

  52. J. M. Byrne, V. S. Coker, E. Cespedes, P. L. Wincott, D. J. Vaughan, R. A. D. Pattrick, G. van der Laan, E. Arenholz, D. Tuna, M. Bencsik, J. R. Lloyd, N. D. Telling. Adv. Funct. Mater., 24, 2518 (2014). https://doi.org/10.1002/adfm.201303230

    Article  CAS  Google Scholar 

  53. P. M. Zelis, G. A. Pasquevich, S. J. Stewart, M. B. F. Van Raap, J. Aphesteguy, I. J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F. H. Sanchez. J. Phys. D. Appl. Phys., 46, 125006 (2013). https://doi.org/10.1088/0022-3727/46/12/125006

  54. S. W. da Silva, F. Nakagomi, M. S. Silva, A. Franco Jr., V. K. Garg, A. C. Oliveira, P. C. Morais. J. Nanopart. Res., 14, 798 (2012). https://doi.org/10.1007/s11051-012-0798-4

    Article  ADS  CAS  Google Scholar 

  55. S. B. Singh, Ch. Srinivas, B. V. Tirupanyam, C. L. Prajapat, M. R. Singh, S. S. Meena, P. Bhatt, S. M. Yusuf, D. L. Sastry. Ceram. Intern., 42, 19188 (2016). https://doi.org/10.1016/j.ceramint.2016.09.081

    Article  CAS  Google Scholar 

  56. A. G. Roca, J. F. Marco, M. del P. Morales, C. J. Serna. J. Phys. Chem. C, 111, 18577 (2007). https://doi.org/10.1021/jp075133m

    Article  CAS  Google Scholar 

  57. E. S. Vasil’eva, O. V. Tolochko, V. G. Semenov, V. S. Volodin, D. Kim. Tech. Phys. Lett., 33, 40 (2007). https://doi.org/10.1134/S1063785007010117

    Article  ADS  CAS  Google Scholar 

  58. C. E. Johnson, J. A. Johnson, H. Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact., 237, 27 (2016). https://doi.org/10.1007/s10751-016-1277-6

    Article  ADS  CAS  Google Scholar 

  59. E. R. Bauminger, S. G. Cohen, A. Marinov, S. Ofer, E. Segal. Phys. Rev., 122, 1447 (1961). https://doi.org/10.1103/PhysRev.122.1447

    Article  ADS  CAS  Google Scholar 

  60. M. A. Chuev. Dokl. Phys., 56, 318 (2011). https://doi.org/10.1134/S1028335811060097

    Article  ADS  CAS  Google Scholar 

  61. M. A. Chuev. J. Phys. Cond. Matter. 20, 505201 (2008). https://doi.org/10.1088/0953-8984/20/50/505201

  62. M. A. Chuev, JETP, 114, 609 (2012). https://doi.org/10.1134/S1063776112020185

    Article  ADS  CAS  Google Scholar 

  63. G. A. Sawatzky, C. Boekema, F. van der Woude. Proc. Int. Conf. on the Appl. of the Mossbauer Effect (Dresden, Germany, 1971), p. 238.

  64. F. van der Woude, G. A. Sawatzky. Phys. Rev. B, 4, 3159 (1971). https://doi.org/10.1103/PhysRevB.4.3159

    Article  ADS  Google Scholar 

  65. I. N. Zakharova, M. A. Shipilin, V. P. Alekseev, A. M. Shipilin. Tech. Phys. Lett., 38, 55 (2012).

    Article  ADS  CAS  Google Scholar 

  66. S. Morup, J. A. Dumesic, H. Topsee. In: Applications of Mossbauer Spectroscopy, ed. by R. L. Cohen (Academic Press, N.Y., 1980), v. II, p. 1.

    Google Scholar 

  67. S. Mcrup, E. Brok, C. Frandsen. J. Nanomater., 720629 (2013). https://doi.org/10.1155/2013/720629

  68. A. S. Kamzin. J. Experim. Theoret. Phys. 89, 890 (1999).

    Article  ADS  CAS  Google Scholar 

  69. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche. J. Phys. Cond. Matter., 12, 7795 (2000). https://doi.org/10.1088/0953-8984/12/35/314

    Article  ADS  CAS  Google Scholar 

  70. A. S. Kamzin, I. M. Obaidat, V. G. Semenov, V. Narayanaswamy, I. A. Al-Omari, B. Issa, I. V. Buryanenko. FTT, 64, 712 (2022) (in Russian). https://doi.org/10.21883/FTT.2022.06.52406.298

  71. G. A. Sawatzky, F. VanderWoude, A. H. Morrish. J. Appl. Phys., 39, 1204 (1968). https://doi.org/10.1063/1.1656224

    Article  ADS  CAS  Google Scholar 

  72. G. A. Sawatzky, F. VanderWoude, A. H. Morrish. Phys. Rev., 187, 747 (1969). https://doi.org/10.1103/PhysRev.187.747

    Article  ADS  CAS  Google Scholar 

  73. E. Lima, A. L. Brandl, A. D. Arelaro, G. F. Goya. J. Appl. Phys., 99, 083908 (2006). https://doi.org/10.1063/1.2191471

  74. J. M. D. Coey. Phys. Rev. Lett., 27, 1140 (1971). https://doi.org/10.1103/PhysRevLett.27.1140

    Article  ADS  CAS  Google Scholar 

  75. S. Ferrari, J. C. Aphesteguy, F. D. Saccone. IEEE Tr. MAG, 51, 2900206 (2015). https://doi.org/10.1109/TMAG.2014.2377132

  76. P. Masina, T. Moyo, H. M. I. Abdallah. J. Magn. Magn. Mater., 381, 41 (2015). https://doi.org/10.1016/j.jmmm.2014.12.053

    Article  ADS  CAS  Google Scholar 

Download references

Funding

N. Dogan and A. Bingolbali express their gratitude for the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK grants nos. 115E776 and 115E777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Caliskan, G., Dogan, N. et al. ZnxFe3 – xO4 (0 \( \leqslant \) x \( \leqslant \) 1.0) Magnetic Nanoparticles Functionalized with Polyacrylic Acid (PAA). Tech. Phys. 68, 602–615 (2023). https://doi.org/10.1134/S106378422308011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422308011X

Keywords:

Navigation