Skip to main content
Log in

Limiting Thickness of Pore Walls Formed in Processes of Anode Etching of Heavily Doped Semiconductors

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

With a decrease in the thickness of the walls separating the space of pores in porous semiconductors, the potential energy of interaction between an electron and a donor (or a hole and an acceptor) can become greater than the kinetic energy of a free charge carrier. As a consequence, such interlayers lose their conductivity and transit into the dielectric state (Mott phase transition). With regard to the conditions of electrochemical pore formation, this means that as the pore channels approach each other during anodic etching to a distance at which the current flow through the wall that separates them stops, the potential of its surface ceases to be determined by the external electric bias and the electrochemical process, that leads to a further decrease in the thickness of such a wall, stops. Expressions are obtained for the limiting thickness of the walls of pores formed in degenerate semiconductors of n- and p-type conductivity. In contrast to the well-known model that relates the loss of conductivity by pore walls to the combination of space charge layers, the proposed model allows a consistent explanation for the experimental data for both n- and p-type silicon with doping levels above 1018 cm–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. X. G. Zhang. Electrochemistry of Silicon and Its Oxide (Kluwer Academic Publishers NY., Boston-Dordrecht-London-Moscow, 2004).

    Google Scholar 

  2. Ed. by G. Korotcenkov. Porous Silicon. From Formation to Aplication (CRC Press, 2020), v. 1, 440 p.

  3. L. Santinacci, T. Djenizian. Comptes Rendus Chimie, 11 (9), 964 (2008). https://doi.org/10.1016/j.crci.2008.06.004

    Article  CAS  Google Scholar 

  4. V. Parkhutik, Sol. St. El., 43, 1121 (1999).

    Article  CAS  Google Scholar 

  5. J.-N. Chazalviel, R. B. Wehrspohn, F. Ozanam. Mater. Sci. Eng. B, 69–70, 1 (2000).

    Article  Google Scholar 

  6. V. Lehmann, R. Stengl, A. Luigart. Mater. Sci. Eng. B, 69, 11 (2000).

    Article  Google Scholar 

  7. K. W. Kolasinski. Surf. Sci., 603, 1904 (2009). https://doi.org/10.1016/j.susc.2008.08.031

    Article  ADS  CAS  Google Scholar 

  8. H. Foll, M. Christophersen, J. Carstensen, G. Hasse. Mater. Sci. Eng., R39, 93–141 (2002).

    Article  Google Scholar 

  9. P. M. Fauchet, J. von Behren. Phys. Stat. Sol. (b), 204, R7 (1997).

    Article  ADS  CAS  Google Scholar 

  10. A. G. Cullis, L. T. Canham, P. D. J. Calcott, J. Appl. Phys., 82, 909 (1997).

    Article  ADS  CAS  Google Scholar 

  11. D. Kovalev, V. Y. Timoshenko, N. Kunzner, E. Gross, F. Koch. Phys. Rev. Lett., 87 (6), 068301/1 (2001).

  12. Yu. Ya. Gurevich, Yu. Ya. Pleskov. Fotoelektrokhimiya poluprovodnikov (Nauka, M., 1983) (in Russian).

  13. G. S. Higashi, Y. J. Chabal, G. W. Trucks, K. Raghavachari. Appl. Phys. Lett., 56, 656 (1990).

    Article  ADS  CAS  Google Scholar 

  14. V. P. Ulin, S. G. Konnikov. FTP, 41 (7), 854, 867 (2007) (in Russian).

  15. V. P. Ulin, N. V. Ulin, and F. Yu. Soldatenkov, FTP, 51, 481 (2017). (in Russian).

    Google Scholar 

  16. V. M. Freiman, G. G. Zegrya, V. P. Ulin, A. G. Zegrya, N. V. Ulin, Yu. M. Mikhailov. ZhTF, 89 (10), 1575 (2019) (in Russian). https://doi.org/10.21883/TP.2023.02.55482.224-22

  17. G. G. Zegrya, V. I. Perel. Osnovy fiziki poluprovodnikov (Fizmatlit, M., 2009) (in Russian).

  18. B. I. Shklovsky, A. L. Efros. Elektronnye svojstva silnolegirovannykh poluprovodnikov (Fizmatlit, Moscow, 1979) (in Russian).

    Google Scholar 

  19. V. F. Gantmakher. Elektrony v neuporyadichennykh sredakh (Fizmatlit, Moscow, 2003) (in Russian).

    Google Scholar 

  20. New Semiconductor Materials. Biology systems. Characteristics and Properties. http://www.matprop.ru/Si.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Zegrya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegrya, G.G., Ulin, V.P., Zegrya, A.G. et al. Limiting Thickness of Pore Walls Formed in Processes of Anode Etching of Heavily Doped Semiconductors. Tech. Phys. 68, 814–817 (2023). https://doi.org/10.1134/S1063784223080376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223080376

Keywords:

Navigation