Skip to main content
Log in

Effect of Radiation Dose on the Deformation Behavior of the Single-Crystal Fe–10Ni–20Cr Alloy

  • Published:
Russian Physics Journal Aims and scope

A molecular dynamics study was carried out on the radiation damage and the onset of plastic deformation in the single-crystal Fe–10Ni–20Cr alloy exposed to different radiation doses under uniaxial tension. It has been shown that upon reaching a threshold radiation dose of ~0.020–0.025 dpa, the number of radiation-induced defects levels off. This behavior of the material is explained by the establishment of equilibrium between the generation and annihilation of radiation defects at radiation doses exceeding the threshold value. The major part of interstitial atoms and vacancies form large-sized clusters and dislocation loops. The formed clusters are characterized by decreased and increased Ni and Cr concentrations, respectively. Stacking faults, as the main carriers of plasticity in such samples, always originate near the largest radiation defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Brinkman, J. Appl. Phys., 25, 961–970 (1954); https://doi.org/10.1063/1.1721810.

  2. F. Seitz and J. S. Koehler, in: Solid State Physics, W. Low, F. Seitz, and D. Turnbull, Eds., Academic Press, New York (1956).

  3. A. F. Calder and D. J. Bacon, J. Nucl. Mater., 207, 25–45 (1993); https://doi.org/10.1016/0022-3115(93)90245-T.

  4. F. Gao, D. J. Bacon, A. F. Calder, et al., J. Nucl. Mater., 230, 47–56 (1993); https://doi.org/10.1016/0022-3115(96)00020-7.

  5. F. Gao, D. J. Bacon, P. E. J. Flewitt, and T. A. Lewis, MRS Proc., 439, 307 (1996); https://doi.org/10.1557/PROC-439-307.

  6. F. Gao, D. J. Bacon, P. E. J. Flewitt, and T. A. Lewis, Model. Simul. Mat. Sci. Eng., 6, 543–556 (1998); https://doi.org/10.1088/0965-0393/6/5/003.

  7. F. Gao, D. J. Bacon, P. E. J. Flewitt, and T. A. Lewis, Nucl. Instrum. Methods Phys. Res. B, 180, 187–193 (2001); https://doi.org/10.1016/S0168-583X(01)00416-5.

  8. R. E. Stoller, MRS Proc., 650, R3.5 (2000); https://doi.org/10.1557/PROC-650-R3.5.

  9. R. E. Stoller, J. Nucl. Mater., 307311, 935–940 (2002); https://doi.org/10.1016/S0022-3115(02)01096-6.

  10. R. E. Stoller and S. G. Guiriec, J. Nucl. Mater., 329–333, 1238–1242 (2004); https://doi.org/10.1016/j.jnucmat.2004.04.288.

  11. L. Malerba, D. Terentyev, P. Olsson, et al., J. Nucl. Mater., 329333, 1156–1160 (2004); https://doi.org/10.1016/j.jnucmat.2004.04.270.

  12. D. A. Terentyev, L. Malerba, R. Chakarova, et al., J. Nucl. Mater., 349, 119–132 (2006); https://doi.org/10.1016/j.jnucmat.2005.10.013.

  13. J. Wallenius, P. Olsson, C. Lagerstedt, et al., Phys. Rev. B, 69, 094103 (2004); https://doi.org/10.1103/PhysRevB.69.094103.

  14. F. Granberg, J. Byggmästar, A. E. Sand, and K. Nordlund, EPL, 119, 56003 (2017); https://doi.org/10.1209/0295-5075/119/56003.

  15. K. Vörtler, N. Juslin, G. Bonny, et al., J. Phys. Condens. Matter, 23, 355007 (2011); https://doi.org/10.1088/0953-8984/23/35/355007.

  16. J. Byggmästar, F. Granberg, and K. Nordlund, J. Nucl. Mater., 508, 530–539 (2018); https://doi.org/10.1016/j.jnucmat.2018.06.005.

  17. Y. Chen and K. Morishita, Nucl. Mater. Energy, 30, 101150 (2022); https://doi.org/10.1016/j.nme.2022.101150.

  18. J. Byggmästar and F. Granberg, J. Nucl. Mater., 528, 151893 (2020); https://doi.org/10.1016/j.jnucmat.2019.151893.

  19. S. M. Zamzamian, S. A. H. Feghhi, and M. Samadfam, Eur. Phys. J. Plus, 137, 391 (2022); https://doi.org/10.1140/epjp/s13360-022-02608-8.

  20. L. K. Béland, A. Tamm, S. Mu, et al., Comput. Phys. Commun., 219, 11–19 (2017); https://doi.org/10.1016/j.cpc.2017.05.001.

  21. R. E. Stoller, M. B. Toloczko, G. S. Was, et al., Nucl. Instrum. Methods Phys. Res. B, 310, 75–80 (2013); https://doi.org/10.1016/j.nimb.2013.05.008.

  22. S. Plimpton, J. Comput. Phys., 117, 1–19 (1995); https://doi.org/10.1006/jcph.1995.1039.

  23. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 91, 4950–4963 (1987); https://doi.org/10.1021/j100303a014.

  24. E. Wigner and F. Seitz, Phys. Rev., 43, 804–810 (1933); https://doi.org/10.1103/PhysRev.43.804.

  25. A. Stukowski, Model Simul. Mat. Sci. Eng., 18, 015012 (2010); https://doi.org/10.1088/0965-0393/18/1/015012.

  26. K. Nordlund and R. S. Averback, Phys. Rev. B, 56, 2421–2431 (1997); https://doi.org/10.1103/PhysRevB.56.2421.

  27. R. S. Averback and K. L. Merkle, Phys. Rev. B, 16, 3860–3869 (1977); https://doi.org/10.1103/PhysRevB.16.3860.

  28. J. Byggmästar, F. Granberg, A. E. Sand, et al., J. Phys. Condens. Matter, 31, 245402 (2019); https://doi.org/10.1088/1361-648X/ab0682.

  29. B. C. Masters, Philos. Mag., 11, 881–893 (1965); https://doi.org/10.1080/14786436508223952.

  30. Z. Yao, M. L. Jenkins, M. Hernández-Mayoral, and M. A. Kirk, Philos. Mag., 90, 4623–4634 (2010); https://doi.org/10.1080/14786430903430981.

  31. F. Granberg, J. Byggmästar, and K. Nordlund, J. Nucl. Mater., 528, 151843 (2020); https://doi.org/10.1016/j.jnucmat.2019.151843.

  32. S. G. Psakhie, K. P. Zolnikov, and D. S. Kryzhevich, Phys. Lett. A, 367 (2007); https://doi.org/10.1016/j.physleta.2007.03.034.

  33. S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Sci. Rep., 9, 3867 (2019); https://doi.org/10.1038/s41598-019-40409-9.

  34. A. V. Korchuganov, K. P. Zolnikov, and D. S. Kryzhevich, Mater. Lett., 252 (2019); https://doi.org/10.1016/j.matlet.2019.05.110.

  35. R. P. Tucker, M. S. Wechsler, and S. M. Ohr, J. Appl. Phys., 40, 400–408 (1969); https://doi.org/10.1063/1.1657068.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Zolnikov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolnikov, K.P., Kryzhevich, D.S. & Korchuganov, A.V. Effect of Radiation Dose on the Deformation Behavior of the Single-Crystal Fe–10Ni–20Cr Alloy. Russ Phys J 67, 251–258 (2024). https://doi.org/10.1007/s11182-024-03116-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03116-1

Keywords

Navigation