Skip to main content
Log in

Synthesis and characterization of zinc(II) phthalocyanine containing 17-membered macrocyclic moiety as new extractant for the removal of Ag(I) from aqueous solution

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new aza-thia macrocycle compound was obtained with high dilution reaction. A new zinc(II) phthalocyanine containing four 17-membered macrocycle moieties with nitrogen-sulfur donor atoms was synthesized in a multi-step reaction sequence. Zn(II) phthalocyanine (S4N-ZnPc) and all of the new compounds were characterized by elemental analysis and different spectroscopic methods such as 1H NMR, 13C NMR, IR, UV–vis and mass. Obtained macrocyclic compounds 6 and S4N-ZnPc were used in solvent extraction of metals such as Ag+, Hg2+, Cd2+, Zn2+, Cu2+, Ni2+, Pb2+ and Cr3+ from aqueous phase to the organic phase. The results of two-phase extraction studies on new macrocyclic compounds showed very high selectivity for silver ions compared to other metal cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sudha PN, Gomathi T, Vinodhini PA, Nasreen K (2014) Marine Carbohydrates of Wastewater Treatment, 1st ed. Elsevier Inc.

  2. Vélez-Pérez LS, Ramirez-Nava J, Hernández-Flores G et al (2020) Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells. Int J Hydrogen Energy 45:13757–13766. https://doi.org/10.1016/j.ijhydene.2019.12.037

    Article  CAS  Google Scholar 

  3. Khan AA, Gul J, Naqvi SR et al (2022) Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135565

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH (2021) Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov 22:101504

    Article  CAS  Google Scholar 

  5. Zhou Q, Yang N, Li Y et al (2020) Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob Ecol Conserv. https://doi.org/10.1016/j.gecco.2020.e00925

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470. https://doi.org/10.1023/A:1005995217901

    Article  CAS  Google Scholar 

  7. Fu Z, Xi S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Methods 30:167–176

    Article  CAS  PubMed  Google Scholar 

  8. Hill DT, Petroni M, Larsen DA et al (2021) Linking metal (Pb, Hg, Cd) industrial air pollution risk to blood metal levels and cardiovascular functioning and structure among children in Syracuse. NY Environ Res 193:110557. https://doi.org/10.1016/j.envres.2020.110557

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kabay N, Baygu Y, Alpoguz HK et al (2013) Synthesis and characterization of porphyrazines as novel extractants for the removal of Ag(I) and Hg(II) from aqueous solution. Dye Pigment 96:372–376. https://doi.org/10.1016/j.dyepig.2012.09.002

    Article  CAS  Google Scholar 

  10. Gök HZ, Demir H (2015) Complexation and adsorption studies of 27-membered dioxadiazapentathia macrocycles with some transition metals. Sep Sci Technol 50:1593–1601. https://doi.org/10.1080/01496395.2014.983247

    Article  CAS  Google Scholar 

  11. Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G et al (2017) Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review. Toxin Rev 36:342–351. https://doi.org/10.1080/15569543.2017.1370601

    Article  CAS  Google Scholar 

  12. Kabay N, Baygu Y, Ocak Ü et al (2015) The extraction ability and sensitivity of porphyrazine derivatives towards some transition metal cations. Sep Sci Technol 50:1002–1009. https://doi.org/10.1080/01496395.2014.978468

    Article  CAS  Google Scholar 

  13. Jyothi RK, Lee JY (2016) The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions. Sci Rep 6:1–14. https://doi.org/10.1038/srep27668

    Article  CAS  Google Scholar 

  14. Hancock RD, Martell AE (1989) Ligand design for selective complexation of metal ions in aqueous solution. Chem Rev 89:1875–1914. https://doi.org/10.1021/cr00098a011

    Article  CAS  Google Scholar 

  15. Baygu Y, Capan R, Erdogan M et al (2021) Synthesis, characterization and chemical sensor properties of a novel Zn(II) phthalocyanine containing 15-membered dioxa-dithia macrocycle moiety. Synth Met. https://doi.org/10.1016/j.synthmet.2021.116870

    Article  Google Scholar 

  16. Langner EHG, Davis WL, Shago RF, Swarts JC (2006) Spectroscopic and liquid crystal properties of phthalocyanine macromolecules with biomedical applications. ACS Symp Ser 928:443–456. https://doi.org/10.1021/bk-2006-0928.ch031

    Article  CAS  Google Scholar 

  17. Yıldız B, Arslan BS, Güzel E et al (2021) Non-aggregating zinc phthalocyanine sensitizer with bulky diphenylphenoxy donor groups and pyrazole-3-carboxylic acid anchoring group for coadsorbent-free dye-sensitized solar cells. Sol Energy 226:173–179. https://doi.org/10.1016/j.solener.2021.08.033

    Article  ADS  CAS  Google Scholar 

  18. Acikbas Y, Erdogan M, Capan R et al (2021) Preparation of Zinc (II) phthalocyanine-based LB thin film: experimental characterization, the determination of some optical properties and the investigation of the optical sensing ability. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2021.167661

    Article  Google Scholar 

  19. Kim J, Lee S, Na K (2021) Glycyrrhetinic acid-modified silicon phthalocyanine for liver cancer-targeted photodynamic therapy. Biomacromol 22:811–822. https://doi.org/10.1021/acs.biomac.0c01550

    Article  CAS  Google Scholar 

  20. Kusama S, Saito T, Hashiba H et al (2017) Crystalline copper(II) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal 7:8382–8385. https://doi.org/10.1021/acscatal.7b02220

    Article  CAS  Google Scholar 

  21. Kluson P, Drobek M, Zsigmond A et al (2009) Environmentally friendly phthalocyanine catalysts for water decontamination-Non-photocatalytic systems. Appl Catal B Environ 91:605–609. https://doi.org/10.1016/j.apcatb.2009.06.033

    Article  CAS  Google Scholar 

  22. Sorokin A, Fraisse L, Rabion A, Meunier B (1997) Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. J Mol Catal A Chem 117:103–114. https://doi.org/10.1016/S1381-1169(96)00415-3

    Article  CAS  Google Scholar 

  23. Pan K, Tang X, Qu G et al (2023) Mesoporous silica/iron phthalocyanine light-driven nanomaterials for efficient removal of Pb2+ ions from wastewater. ACS Appl Nano Mater 6:12816–12827. https://doi.org/10.1021/acsanm.3c01499

    Article  CAS  Google Scholar 

  24. Gök HZ, Gök Y, Eker E (2015) Synthesis, characterization, and metal extraction studies of a new macrobicyclic ligand. Turkish J Chem 39:426–437. https://doi.org/10.3906/kim-1412-27

    Article  CAS  Google Scholar 

  25. Chimie RR De, Kantar C (2019) Phthalocyanines Containing Resorcinarene Cavitands ; 64:361–366. https://doi.org/10.33224/rrch.2019.64.4.09

  26. Armerego DD, Perin WLF, PerinArmarego DR (1985) Purification of laboratory chemicals, 2nd edn. Pergamon Press, New York

    Google Scholar 

  27. Juaristi E, Cruz-SBnchez JS (1988) Synthesis and conformation of 4,4,5,5-Tetramethyl-1,2-dithiane Mono-S -oxide’. J Org Chem 53:3334–3338. https://doi.org/10.1021/jo00249a038

    Article  CAS  Google Scholar 

  28. Kabay N, Ocak Ü, Gün S, Gök Y (2013) Synthesis of metal-free and zinc phthalocyanines containing 2-pyridyl-methyl pendant arm linked with NS4-donor macrocyclic moiety and their selectivity towards Cu(II) cations. J Porphyr Phthalocyanines 17:480–488. https://doi.org/10.1142/S1088424613500600

    Article  CAS  Google Scholar 

  29. Newcomb M, Timko JM, Walba DM, Cram DJ (1977) Host-guest complexation. 3. organization of pyridyl binding site. J Am Chem Soc 99:6392–6398. https://doi.org/10.1021/ja00461a035

    Article  CAS  Google Scholar 

  30. Pedersen CJ (1968) Ionic complexes of macrocyclic polyethers. Fed Am Soc Exp Biol 27:1305–1309

    CAS  Google Scholar 

  31. Majeed SA, Ghazal B, Nevonen DE et al (2017) Evaluation of the intramolecular charge-transfer properties in solvatochromic and electrochromic zinc octa(carbazolyl)phthalocyanines. Inorg Chem 56:11640–11653. https://doi.org/10.1021/acs.inorgchem.7b01570

    Article  CAS  PubMed  Google Scholar 

  32. Özdemir M, Abliatipova A, Benian S, et al (2020) 1,2,3-Triazole incorporated coumarin carrying metal-free, Zn(II), Mg(II) phthalocyanines: Synthesis, characterization, theoretical studies, photophysical and photochemical properties. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2020.112845

  33. Vetrichelvan M, Lai YH, Mok KF (2003) A new NS 4 quinquedentate macrocyclic ligand: synthesis, structure and properties of its Ni (ii), Pd (ii), Pt (ii), Cu (ii), Cu (i) and Ag (i) complexes. Dalton Transact 3:295–303

    Article  Google Scholar 

  34. Sibert JW, Lange SJ, Stern CL et al (1995) Octathioporphyrazine crown ethers: an octanuclear agi complex with coordination in the meso pocket. Angew Chemie Int Ed English 34:2020–2022. https://doi.org/10.1002/anie.199520201

    Article  CAS  Google Scholar 

  35. Gutmańska K, Szweda P, Daszkiewicz M et al (2023) Silver(I) complexes with nitrile ligands: new materials with versatile applications. Appl Organomet Chem 37:1–16. https://doi.org/10.1002/aoc.7207

    Article  CAS  Google Scholar 

  36. Kim Y, Ju H, Jung JH et al (2019) Anion-dependent soft metal complexes with an O2S3-macrocycle: from monomer and dimer to polymer with endo-, exo-, and endo/exocyclic coordination modes. Inorg Chem Commun 100:75–80. https://doi.org/10.1016/j.inoche.2018.12.020

    Article  CAS  Google Scholar 

  37. Zhao H, Wang C, Zhang X et al (2014) Theoretical studies on the high-spin binuclear cyclopentadienyliron derivatives Cp 2Fe2(CN)n (Cp = η5-C 5H5; N = 6, 5, 4, 3, 2, 1). Mol Phys 112:740–750. https://doi.org/10.1080/00268976.2013.857439

    Article  ADS  CAS  Google Scholar 

  38. Talanova GG, Elkarim NSA, Talanov VS et al (1999) The “picrate effect” on extraction selectivities of aromatic group- containing crown ethers for alkali metal cations. J Am Chem Soc 121:11281–11290. https://doi.org/10.1021/ja9915899

    Article  CAS  Google Scholar 

  39. Gök HZ, Gök Y (2019) Novel polymeric phthalocyanines bridged flexible 1,5-pentanedithiol unit for metal ions extraction: synthesis, characterization and evaluation. J Incl Phenom Macrocycl Chem 94:55–63. https://doi.org/10.1007/s10847-019-00901-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Pamukkale University (Grant No: 2022BSP002).

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

The author designed this study, carried out all experiments and wrote the manuscript.

Corresponding author

Correspondence to Yasemin Baygu Yıldız.

Ethics declarations

Conflict of interest

The author have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 989 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, Y.B. Synthesis and characterization of zinc(II) phthalocyanine containing 17-membered macrocyclic moiety as new extractant for the removal of Ag(I) from aqueous solution. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00577-8

Navigation