Skip to main content

Advertisement

Log in

Association between thyroid disorders and extra-thyroidal cancers, a review

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvβ3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Christensen DH, Veres K, Ording AG, Jørgensen JOL, Cannegieter SC, Thomsen RW, et al. Risk of cancer in patients with thyroid disease and venous thromboembolism. Clin Epidemiol. 2018;10:907–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shu X, Ji J, Li X, Sundquist J, Sundquist K, Hemminki K. Cancer risk in patients hospitalised for graves’ disease: a population-based cohort study in Sweden. Br J Cancer. 2010;102(9):1397–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao T-H, Liao W, Lin L-T, Zhu Z-P, Lu M-G, Fu C-M, et al. Curcumae rhizoma and its major constituents against hepatobiliary disease: pharmacotherapeutic properties and potential clinical applications. Phytomedicine. 2022;102: 154090.

    Article  CAS  PubMed  Google Scholar 

  4. Dou M, Zhu K, Fan Z, Zhang Y, Chen X, Zhou X, et al. Reproductive hormones and their receptors may affect lung cancer. Cell Physiol Biochem. 2017;44(4):1425–34.

    Article  CAS  PubMed  Google Scholar 

  5. Kuklinski LF, Zens MS, Perry AE, Gossai A, Nelson HH, Karagas MR. Sex hormones and the risk of keratinocyte cancers among women in the United States: a population-based case–control study. Int J Cancer. 2016;139(2):300–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boursi B, Haynes K, Yang YX. Thyroid dysfunction thyroid hormone replacement and colorectal cancer risk. J Natl Cancer Instit. 2015;107(6):djv084.

    Article  Google Scholar 

  7. de la Cruz-Merino L, Grande-Pulido E, Albero-Tamarit A, Albero-Tamarit A. Cancer and immune response: old and new evidence for future challenges. Oncologist. 2008;13(12):1246–54.

    Article  CAS  PubMed  Google Scholar 

  8. Salehi S, Mahmoudinezhad Dezfouli SM, Azadeh H, Khosravi S. Immune dysregulation and pathogenic pathways mediated by common infections in rheumatoid arthritis. Folia Microbiol. 2023;68(1):11.

    Google Scholar 

  9. Dezfouli SMM, Salehi S, Khosravi S. Pathogenic and therapeutic roles of cytokines in Kawasaki diseases. Clin Chim Acta. 2022;532:21–8.

    Article  Google Scholar 

  10. Fiore E, Giustarini E, Mammoli C, Fragomeni F, Campani D, Muller I, et al. Favorable predictive value of thyroid autoimmunity in high aggressive breast cancer. J Endocrinol Invest. 2007;30:734–8.

    Article  CAS  PubMed  Google Scholar 

  11. Medghalchi A, Akbari M, Alizadeh Y, Moghadam RS. The epidemiological characteristics of patients with thyroid eye disease in a referral center in northern Iran. J Curr Ophthal. 2018;30(4):353–8.

    Article  Google Scholar 

  12. Lun Y, Wu X, Xia Q, Han Y, Zhang X, Liu Z, et al. Hashimoto’s thyroiditis as a risk factor of papillary thyroid cancer may improve cancer prognosis. Otolaryngol-Head Neck Sur. 2013;148(3):396–402.

    Article  Google Scholar 

  13. Boi F, Pani F, Mariotti S. Thyroid autoimmunity and thyroid cancer: review focused on cytological studies. Eur Thyroid J. 2017;6(4):178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boi F, Minerba L, Lai M, Marziani B, Figus B, Spanu F, et al. Both thyroid autoimmunity and increased serum TSH are independent risk factors for malignancy in patients with thyroid nodules. J Endocrinol Invest. 2013;36:313–20.

    CAS  PubMed  Google Scholar 

  15. Kunjumohamed FP, Al-Busaidi NB, Al-Musalhi HN, Al-Shereiqi SZ, Al-Salmi IS. The prevalence of thyroid cancer in patients with hyperthyroidism. Saudi Med J. 2015;36(7):874.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Zhang Y, Tan Z, Wang J, Hu Y, Sun J, et al. Lysyl oxidase promotes anaplastic thyroid carcinoma cell proliferation and metastasis mediated via BMP1. Gland Surg. 2022;11(1):245.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghaffari HR, Kamari Z, Ranaei V, Pilevar Z, Akbari M, Moridi M, et al. The concentration of potentially hazardous elements (PHEs) in drinking water and non-carcinogenic risk assessment: a case study in Bandar Abbas, Iran. Environ Res. 2021;201:111567.

    Article  CAS  PubMed  Google Scholar 

  18. Ortega-Olvera C, Ulloa-Aguirre A, Ángeles-Llerenas A, Mainero-Ratchelous FE, González-Acevedo CE, Hernández-Blanco ML, et al. Thyroid hormones and breast cancer association according to menopausal status and body mass index. Breast Cancer Res. 2018;20(1):94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Teumer A, Chaker L, Groeneweg S, Li Y, Di Munno C, Barbieri C, et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat Commun. 2018;9(1):4455.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Davies T. The thyrotropin receptors spread themselves around. J Clin Endocrinol Metab. 1994;79(5):1232–3.

    CAS  PubMed  Google Scholar 

  21. Chen YK, Lin CL, Chang YJ, Cheng FTF, Peng CL, Sung FC. Cancer risk in patients with Graves’ disease: a nationwide cohort study. Thyroid. 2013;23(7):879–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gharehbeglou M, Arjmand G, Haeri MR, Khazeni M. Nonselective mevalonate kinase inhibitor as a novel class of antibacterial agents. Cholesterol. 2015;2015:147601.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lasa M, Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne). 2022;13:937099. https://doi.org/10.3389/fendo.2022.937099.

    Article  PubMed  Google Scholar 

  24. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  25. Freindorf M, Furlani TR, Kong J, Cody V, Davis FB. Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J Biomed Biotechnol. 2012;2012:959057.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin HY, Sun GL, Tang HY, Lin C, Luidens MK, Mousa SA. L-Thyroxine vs. 3, 5, 3′-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol-Cell Physiol. 2009;296(5):980–91.

    Article  Google Scholar 

  27. Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99(1):39–51.

    Article  PubMed  Google Scholar 

  28. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paschke R. Molecular pathogenesis of nodular goiter. Langenbeck’s Arch Surg. 2011;396:1127–36.

    Article  Google Scholar 

  30. Medas F, Canu GL, Cappellacci F, Boi F, Lai ML, Erdas E. Predictive factors of lymph node metastasis in patients with papillary microcarcinoma of the thyroid retrospective analysis on cases. Front Endocrinol. 2020;11:551. https://doi.org/10.3389/fendo.2020.00551.

    Article  Google Scholar 

  31. Sorrenti S, Dolcetti V, Fresilli D, DelGaudioPacini GP, Huang P, et al. The role of CEUS in the evaluation of thyroid cancer: from diagnosis to local staging. J Clin Med. 2021;10(19):4559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohori NP. Molecular testing and thyroid nodule management in North America. Gland Surg. 2020;9(5):1628.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Liyanarachchi S, Miller KE, Nieminen TT, Comiskey DF Jr, Li W, et al. Identification of rare variants predisposing to thyroid cancer. Thyroid. 2019;29(7):946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang SP, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer. 2016;23(12):R577–95.

    Article  CAS  Google Scholar 

  35. Nikiforov YE, Biddinger PW, Thompson LD. Diagnostic pathology and molecular genetics of the thyroid: a comprehensive guide for practicing thyroid pathology. Philadelphia, PA: Lippincott Williams and Wilkins; 2012.

    Google Scholar 

  36. Cui B, Wu Z, Yu B, Li Y, Liu H. The diagnostic value of BRAF V600E gene detection combined with DNA ploidy analysis in thyroid cancer. Discov Med. 2023;35(179):1064–70.

    Article  PubMed  Google Scholar 

  37. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  PubMed Central  Google Scholar 

  38. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239. https://doi.org/10.1371/journal.pgen.1006239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hall LC, Salazar EP, Kane SR, Liu N. Effects of thyroid hormones on human breast cancer cell proliferation. J Steroid Biochem Mol Biol. 2008;109(1–2):57–66.

    Article  CAS  PubMed  Google Scholar 

  40. Tashireva L, Grigoryeva E, Alifanov V, Iamshchikov P, Zavyalova M, Perelmuter V. Spatial heterogeneity of integrins and their ligands in primary breast tumors. Discov Med. 2023;35(178):910–20.

    Article  PubMed  Google Scholar 

  41. Tosovic A, Bondeson A-G, Bondeson L, Ericsson U-B, Malm J, Manjer J. Prospectively measured triiodothyronine levels are positively associated with breast cancer risk in postmenopausal women. Breast Cancer Res. 2010;12:1–12.

    Article  Google Scholar 

  42. Jiang Z-R, Yang L-H, Jin L-Z, Yi L-M, Bing P-P, Zhou J, et al. Identification of novel cuproptosis-related lncRNA signatures to predict the prognosis and immune microenvironment of breast cancer patients. Front Oncol. 2022;12:988680. https://doi.org/10.3389/fonc.2022.988680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye X-X, Ren Z-Y, Vafaei S, Zhang J-M, Song Y, Wang Y-X, et al. Effectiveness of Baduanjin exercise on quality of life and psychological health in postoperative patients with breast cancer: a systematic review and meta-analysis. Integr Cancer Ther. 2022;21:15347354221104092.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Søgaard M, Farkas DK, Ehrenstein V, Jørgensen JOL, Dekkers OM, Sørensen HT. Hypothyroidism and hyperthyroidism and breast cancer risk: a nationwide cohort study. Eur J Endocrinol. 2016;174(4):409–14.

    Article  PubMed  Google Scholar 

  45. Ortega-Olvera C, Ulloa-Aguirre A, Ángeles-Llerenas A, Mainero-Ratchelous FE, González-Acevedo CE, Hernández-Blanco ML. Thyroid hormones and breast cancer association according to menopausal status and body mass index. Breast Cancer Res. 2018;20:1–14.

    Article  Google Scholar 

  46. Huang J, Jin L, Ji G, Xing L, Xu C, Xiong X, et al. Implication from thyroid function decreasing during chemotherapy in breast cancer patients: chemosensitization role of triiodothyronine. BMC Cancer. 2013;13:1–12.

    Article  ADS  Google Scholar 

  47. Villa NM, Li N, Yeh MW, Hurvitz SA, Dawson NA, Leung AM. Serum thyrotropin concentrations are not predictive of aggressive breast cancer biology in euthyroid individuals. Endocr Pract. 2015;21(9):1040–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brandt J, Borgquist S, Almgren P, Försti A, Huss L, Melander O, et al. Thyroid-associated genetic polymorphisms in relation to breast cancer risk in the Malmö diet and cancer study. Int J Cancer. 2018;142(7):1309–21.

    Article  CAS  PubMed  Google Scholar 

  49. Anil C, Guney T, Gursoy A. The prevalence of benign breast diseases in patients with nodular goiter and Hashimoto’s thyroiditis. J Endocrinol Invest. 2015;38:971–5.

    Article  CAS  PubMed  Google Scholar 

  50. Giustarini E, Pinchera A, Fierabracci P, Roncella M, Fustaino L, Mammoli C, et al. Thyroid autoimmunity in patients with malignant and benign breast diseases before surgery. Eur J Endocrinol. 2006;154(5):645–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wang B, Lu Z, Huang Y, Li R, Lin T. Does hypothyroidism increase the risk of breast cancer: evidence from a meta-analysis. BMC Cancer. 2020;20(1):733. https://doi.org/10.1186/s12885-020-07230-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. L’Heureux A, Wieland D, Weng C, Chen Y, Lin C, Lin T, et al. Association between thyroid disorders and colorectal cancer risk in adult patients in Taiwan. JAMA Netw Open. 2019;2(5):e193755.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rennert G, Rennert HS, Pinchev M, Gruber SB. A case–control study of levothyroxine and the risk of colorectal cancer. J Natl Cancer Inst. 2010;102(8):568–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goldman MB, Monson RR, Maloof F. Cancer mortality in women with thyroid disease. Can Res. 1990;50(8):2283–9.

    CAS  Google Scholar 

  55. Andersen SL, Olsen J, Wu CS, Laurberg P. Smoking reduces the risk of hypothyroidism and increases the risk of hyperthyroidism: evidence from 450 842 mothers giving birth in Denmark. Clin Endocrinol. 2014;80(2):307–14.

    Article  Google Scholar 

  56. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388(10039):73–85.

    Article  CAS  PubMed  Google Scholar 

  57. VanCutsemSagaert EX, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–64.

    Article  Google Scholar 

  58. Razmi M, Ghods R, Vafaei S, Sahlolbei M, Saeednejad Zanjani L, Madjd Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: a systematic review and meta-analysis. Cancer Cell Int. 2021;21:1–20.

    Article  Google Scholar 

  59. Kirkegård J, Farkas DK, Jørgensen JOL, Cronin-Fenton D. Hyper- and hypothyroidism and gastrointestinal cancer risk: a Danish nationwide cohort study. Endocr Connect. 2018;7(11):1129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reddy A, Dash C, Leerapun A, Mettler TA, Stadheim LM, Lazaridis KN, et al. Hypothyroidism: a possible risk factor for liver cancer in patients with no known underlying cause of liver disease. Clin Gastroenterol Hepatol. 2007;5(1):118–23.

    Article  PubMed  Google Scholar 

  61. Wen L, Cheng F, Zhou Y, Yin C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J Gastroenterol. 2015;21(5):313.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hassan MM, Kaseb A, Li D, Patt YZ, Vauthey JN, Thomas MB, et al. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology. 2009;49(5):1563–70.

    Article  PubMed  Google Scholar 

  63. Frau C, Loi R, Petrelli A, Perra A, Menegon S, Kowalik MA, et al. Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats. Hepatology. 2015;61(1):249–59.

    Article  CAS  PubMed  Google Scholar 

  64. Ma Z, Song P, Ji D, Zheng M, Qiu G, Liu Z, et al. Thyroid hormones as biomarkers of lung cancer: a retrospective study. Ann Med. 2023;55(1):2196088.

    Article  PubMed  PubMed Central  Google Scholar 

  65. He B, Sun H, Bao M, Li H, He J, Tian G, et al. A cross-cohort computational framework to trace tumor tissue-of-origin based on RNA sequencing. Sci Rep. 2023;13(1):15356.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. He B, Zhang Y, Zhou Z, Wang B, Liang Y, Lang J, et al. A neural network framework for predicting the tissue-of-origin of 15 common cancer types based on RNA-Seq data. Front Bioeng Biotechnol. 2020;8:737. https://doi.org/10.3389/fbioe.2020.00737.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cui Y, Wang X, Lin F, Li W, Zhao Y, Zhu F, et al. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis. 2022;13(3):899.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mohamed FEZA, Abdelaziz AO, Kasem AH, Ellethy T, Gayyed MF. Thyroid hormone receptor α1 acts as a new squamous cell lung cancer diagnostic marker and poor prognosis predictor. Sci Rep. 2021;11(1):7944.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meng R, Tang H-Y, Westfall J, London D, Cao JH, Mousa SA, et al. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells. PLoS ONE. 2011;6(11):e27547. https://doi.org/10.1371/journal.pone.0027547.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Latteyer S, Christoph S, Theurer S, Hönes GS, Schmid KW, Führer D, et al. Thyroxine promotes lung cancer growth in an orthotopic mouse model. Endocr Relat Cancer. 2019;26(6):565–74.

    Article  CAS  PubMed  Google Scholar 

  71. Qi R, Xu H, Fu X, Yu Y, Lv D, Li Y, et al. Case report: keratoacanthoma and type I diabetes secondary to treatment with PM8001, a bifunctional fusion protein targeting TGF-β and PD-L1. Front Oncol. 2023;13:1046266. https://doi.org/10.3389/fonc.2023.1046266.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu W, Zhi F-H, Zheng S-Y, Yang H-S, Geng X-J, Luo H-H, et al. Hypothyroidism reduces the risk of lung cancer through oxidative stress response and the PI3K/Akt signaling pathway: An RNA-seq and Mendelian randomization study. Heliyon. 2023;9(12):e22661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ellerhorst J, Cooksley C, Grimm E. Autoimmunity and hypothyroidism in patients with uveal melanoma. Melanoma Res. 2001;11(6):633–7.

    Article  CAS  PubMed  Google Scholar 

  74. Prinzi N, Sorrenti S, Baldini E, De Vito C, Tuccilli C, Catania A, et al. Association of thyroid diseases with primary extra-thyroidal malignancies in women: results of a cross-sectional study of 6,386 patients. PLoS ONE. 2015;10(3):e0122958. https://doi.org/10.1371/journal.pone.0122958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oakley GM, Curtin K, Layfield L, Jarboe E, Buchmann LO, Hunt JP. Increased melanoma risk in individuals with papillary thyroid carcinoma. JAMA Otolaryngol Head Neck Surg. 2014;140(5):423–7.

    Article  PubMed  Google Scholar 

  76. Tavares C, Melo M, Cameselle-Teijeiro JM, Soares P, Sobrinho-Simoes M. Endocrine tumours: genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2016;174(4):R117–26.

    Article  CAS  PubMed  Google Scholar 

  77. Cicenas J, Tamosaitis L, Kvederaviciute K, Tarvydas R, Staniute G, Kalyan K, et al. KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma. Med Oncol. 2017;34:1–11.

    Article  CAS  Google Scholar 

  78. Potrony M, Puig-Butille J, Ribera-Sola M, Iyer V, Robles-Espinoza C, Aguilera P, et al. POT1 germline mutations but not TERT promoter mutations are implicated in melanoma susceptibility in a large cohort of Spanish melanoma families. Br J Dermatol. 2019;181(1):105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wong K, Robles-Espinoza CD, Rodriguez D, Rudat SS, Puig S, Potrony M. Association of germline missense variant with familial melanoma. JAMA Dermatol. 2019;155(5):604–9.

    Article  PubMed  Google Scholar 

  80. Srivastava A, Miao B, Skopelitou D, Kumar V, Kumar A, Paramasivam N, et al. A germline mutation in the POT1 gene is a candidate for familial non-medullary thyroid cancer. Cancers. 2020;12(6):1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chan YX, Knuiman MW, Divitini ML, Brown SJ, Walsh J, Yeap BB. Lower TSH and higher free thyroxine predict incidence of prostate but not breast, colorectal or lung cancer. Eur J Endocrinol. 2017;177(4):297–308.

    Article  CAS  PubMed  Google Scholar 

  82. Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma cell-free DNA concentration in the prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11:599602. https://doi.org/10.3389/fonc.2021.599602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mondul AM, Weinstein SJ, Bosworth T, Remaley AT, Virtamo J, Albanes D. Circulating thyroxine, thyroid-stimulating hormone, and hypothyroid status and the risk of prostate cancer. PLoS ONE. 2012;7(10):e47730. https://doi.org/10.1371/journal.pone.0047730.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aranda A, Martínez-Iglesias O, Ruiz-Llorente L, García-Carpizo V, Zambrano A. Thyroid receptor: roles in cancer. Trends Endocrinol Metab. 2009;20(7):318–24.

    Article  CAS  PubMed  Google Scholar 

  85. Delgado-González E, Sánchez-Tusie AA, Morales G, Aceves C, Anguiano B. Triiodothyronine attenuates prostate cancer progression mediated by β-adrenergic stimulation. Mol Med. 2016;22:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hanahan D, Weinberg RA. Hallmarks of cancer the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  87. Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21(462):473.

    Google Scholar 

  88. Shen W, Pei P, Zhang C, Li J, Han X, Liu T, et al. A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. ACS Nano. 2023;17(23):23998–4011.

    Article  CAS  PubMed  Google Scholar 

  89. Mousa S, Davis F, Mohamed S, Davis P, Feng X. Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model. Int Angiol. 2006;25(4):407.

    CAS  PubMed  Google Scholar 

  90. Mousa SA, O’Connor LJ, Bergh JJ, Davis FB, Scanlan TS, Davis PJ. The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol. 2005;46(3):356–60.

    Article  CAS  PubMed  Google Scholar 

  91. Bergh JJ, Lin H-Y, Lansing L, Mohamed SN, Davis FB, Mousa S, et al. Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology. 2005;146(7):2864–71.

    Article  CAS  PubMed  Google Scholar 

  92. Mostafavi A, Jafarnejad S, Khavandi S, Tabatabaee SA. Effect of vitamin D deficiency on coronary artery stenosis. Iran Heart J. 2015;16(3):38–44.

    Google Scholar 

  93. Lin H-Y, Chin Y-T, Nana AW, Shih Y-J, Lai H-Y, Tang H-Y, et al. Actions of l-thyroxine and nano-diamino-tetrac (nanotetrac) on PD-L1 in cancer cells. Steroids. 2016;114:59–67.

    Article  PubMed  Google Scholar 

  94. Rodríguez-Molinero A, Hercbergs A, Sarrias M, Yuste A. Plasma 3, 3’, 5-Triiodo-L-thyronine [T3] level mirrors changes in tumor markers in two cases of metastatic cancer of the breast and pancreas treated with exogenous L-T3. Cancer Biomark. 2018;21(2):433–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

J.L., contributed to the idea design, literature search. X.J., contributed to writing the manuscript. Z.J., drafted the work.

Corresponding author

Correspondence to Jingru Li.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Li, J. & Jiang, Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03434-3

Keywords

Navigation