Skip to main content
Log in

Peridynamic simulation of creep deformation and damage

  • S.I. : Non-Classical Cont Mech
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This study presents a nonordinary state-based (NOSB) peridynamic (PD) modeling of creep deformation and damage. The force density vectors in PD equilibrium equations are derived by considering the Liu and Murakami creep model with a damage parameter. The bond-associated (BA) deformation gradient is derived by using the PD differential operator (PDDO). Traction and displacement boundary conditions are directly imposed through a novel strategy while solving for the strong form of PD equilibrium equations. The PD form of traction components enables the imposition of traction conditions in the actual “boundary layer” region without any unphysical displacement kinks near the boundaries. The approach is validated under uniaxial and 2D plane stress assumptions by considering creep deformation due to constant stress at high temperatures. The creep strain predictions are in excellent agreement with the experimental data and analytical solutions. Subsequently, creep crack growth in a compact tension (CT) specimen is simulated by using the damage variable in Liu and Murakami constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Norton, F. H.: The creep of steel at high temperatures (No. 35). McGraw-Hill Book Company, Incorporated (1929)

  2. Betten, J.: Creep mechanics. Springer Science & Business Media, Berlin (2008)

    Google Scholar 

  3. Evans, R. W., Wilshire, B.: Creep of metals and alloys (1985)

  4. Graham, A., Walles, K.F.A.: Relationships between long and short time creep and tensile properties of a commercial alloy. J. Iron Steel Inst. 179, 104–121 (1955)

    Google Scholar 

  5. Holdsworth, S.R.: Constitutive equations for creep curves and predicting service life. Creep-resistant steels, pp. 403–420. Woodhead Publishing, Sawston (2008)

  6. Kachanov, L.M.: Time to failure under creep conditions. Izv. Akad. Navk. SSR.Otd Teck. Nauk. 8, 26–31 (1958)

  7. Rabotnov, Y.N.: Creep Problems in Structural Members. North-Holland, Amsterdam (1969)

    Google Scholar 

  8. Liu, Y., Murakami, S.: Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 41(1), 57–65 (1998)

  9. Hyde, C.J., Hyde, T.H., Sun, W., Becker, A.A.: Damage mechanics based predictions of creep crack growth in 316 stainless steel. Eng. Fract. Mech. 77(12), 2385–2402 (2010)

    Article  Google Scholar 

  10. Nikbin, K.M., Smith, D.J., Webster, G.A.: Prediction of creep crack growth from uniaxial creep data. Proc. R. Soc. Lond. A Math. Phys. Sci. 396(1810), 183–197 (1984)

  11. Spindler, M.W.: The multiaxial creep ductility of austenitic stainless steels. Fatigue Fract. Eng. Mater. Struct. 27(4), 273–281 (2004)

    Article  Google Scholar 

  12. Wen, J.F., Tu, S.T., Gao, X.L., Reddy, J.N.: Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model. Eng. Fract. Mech. 98, 169–184 (2013)

    Article  Google Scholar 

  13. Meng, Q., Wang, Z.: Creep damage models and their applications for crack growth analysis in pipes: A review. Eng. Fract. Mech. 205, 547–576 (2019)

    Article  Google Scholar 

  14. Pandey, V.B., Singh, I.V., Mishra, B.K.: A stress triaxiality based modified Liu-Murakami creep damage model for creep crack growth life prediction in different specimens. Int. J. Fract. 221(1), 101–121 (2020)

    Article  Google Scholar 

  15. Oh, C. S., Kim, N. H., Min, S. H., Kim, Y. J.: Finite element damage analyses for predictions of creep crack growth. In Pressure Vessels and Piping Conference (Vol. 49255, pp. 331–335) (2010)

  16. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  18. Tupek, M.R., Rimoli, J.J., Radovitzky, R.: An approach for incorporating classical continuum damage models in state-based peridynamics. Comput. Methods Appl. Mech. Eng. 263, 20–26 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Behzadinasab, M., Foster, J.T.: A semi-Lagrangian constitutive correspondence framework for peridynamics. J. Mech. Phys. Solids 137, 103862 (2020)

    Article  MathSciNet  Google Scholar 

  20. Kulkarni, S.S., Tabarraei, A.: An ordinary state based peridynamic correspondence model for metal creep. Eng. Fract. Mech. 233, 107042 (2020)

    Article  Google Scholar 

  21. Behera, D., Roy, P., Anicode, S.V.K., Madenci, E., Spencer, B.: Imposition of local boundary conditions in peridynamics without a fictitious layer and unphysical stress concentrations. Comput. Methods Appl. Mech. Eng. 393, 114734 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  23. Madenci, E., Oterkus, E.: Peridynamic theory and its applications. In: Peridynamic theory, pp. 19–43. Springer, New York, NY (2014)

  24. Gu, X., Zhang, Q., Madenci, E., Xia, X.: Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. Comput. Methods Appl. Mech. Eng. 357, 112592 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chen, H.: Bond-associated deformation gradients for peridynamic correspondence model. Mech. Res. Commun. 90, 34–41 (2018)

    Article  ADS  Google Scholar 

  26. Chen, H., Spencer, B.W.: Peridynamic bond?associated correspondence model: Stability and convergence properties. Int. J. Numer. Meth. Eng. 117(6), 713–727 (2019)

    Article  MathSciNet  Google Scholar 

  27. Rabczuk, T., Ren, H., Zhuang, X.: A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Comput. Mater. Continua 59, 31–55 (2019)

    Article  Google Scholar 

  28. Ren, H., Zhuang, X., Rabczuk, T.: A nonlocal operator method for solving partial differential equations. Comput. Methods Appl. Mech. Eng. 358, 112621 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Madenci, E., Dorduncu, M., Phan, N., Gu, X.: Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization. Eng. Fract. Mech. 218, 106613 (2019)

    Article  Google Scholar 

  30. Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Madenci, E., Dorduncu, M., Barut, A., Futch, M.: Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numer. Methods Partial Differ. Equ. 33(5), 1726–1753 (2017)

    Article  MathSciNet  Google Scholar 

  32. Madenci, E., Barut, A., Dorduncu, M.: Peridynamic differential operator for numerical analysis. Springer International Publishing, Berlin (2019)

    Book  Google Scholar 

  33. Hsu, T.R., Zhai, Z.H.: A finite element algorithm for creep crack growth. Eng. Fract. Mech. 20, 521–533 (1984)

    Article  Google Scholar 

  34. Hyde, T.H., Saber, M., Sun, W.: Creep crack growth data and prediction for a P91 weld at 650 C. Int. J. Press. Vessels Pip. 87(12), 721–729 (2010)

    Article  Google Scholar 

  35. Hyde, T.H.: Creep crack growth in 316 stainless steel at 600 C. High Temp. Technol. 6(2), 51–61 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed as part of the ongoing research at the MURI Center for Material Failure Prediction through Peridynamics at the University of Arizona (AFOSR Grant No. FA9550-14-1-0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan Madenci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, D., Roy, P. & Madenci, E. Peridynamic simulation of creep deformation and damage. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01295-3

Keywords

Navigation