Skip to main content

Advertisement

Log in

Isolation of phages against Streptococcus species in the oral cavity for potential control of dental diseases and associated systemic complications

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Dental infections and systemic complications caused by Streptococcus species in the oral cavity are increasingly exhibiting resistance to commonly used antibiotics, posing a potential threat to global public health. Phage therapy may offer a superior alternative, given that bacteriophages can be easily isolated and rapidly replicate in large numbers. In this study, six Streptococcus species from the oral cavity were characterized. Bacteriophages isolated from wastewater using five of these species as hosts produced plaques ranging from 0.2 to 2.4 mm in size. The phages demonstrated stability within a temperature range of 4 ℃ to 37 ℃. However, at temperatures exceeding 45 ℃, a noticeable reduction in bacteriophage titer was observed. Similarly, the phages showed greater stability within a pH range of 5 to 10. The isolated phages exhibited latency periods ranging from 15 to 20 min and had burst sizes varying from 10 to 200 viral particles. This study supports the potential use of bacteriophages in controlling infections caused by Streptococcus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abranches J, Zeng L, Kajfasz JK, Palmer S, Chakraborty B, Wen Z, Richards VP, Jeannine Brady L, Lemos JA (2019) Biology of oral Streptococci. Gram-Positive Pathog 6(5):426–434. https://doi.org/10.1128/9781683670131.ch26

    Article  Google Scholar 

  • Acharya KP, Wilson RT (2019) Antimicrobial resistance in Nepal. Front Med 6:105

    Article  Google Scholar 

  • Adler L, Parizade M, Koren G, Yehoshua I (2020) Oral cavity swabbing for diagnosis of group a Streptococcus: a prospective study. BMC Fam Pract 21(1):1–6

    Article  Google Scholar 

  • Ahmadi H, Ebrahimi A, Ahmadi F (2021) Antibiotic therapy in dentistry. International journal of dentistry 2021:10. https://doi.org/10.1155/2021/6667624

    Article  Google Scholar 

  • Akhtar M, Viazis S, Diez-Gonzalez F (2014) Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control 38(1):67–74. https://doi.org/10.1016/J.FOODCONT.2013.09.064

    Article  Google Scholar 

  • Akhwale JK, Rohde M, Rohde C, Bunk B, Spröer C, Boga HI, Wittmann J (2019) Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita Kenya. PLoS ONE 14(4):e0215734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alghamdi S (2022) Isolation and identification of the oral bacteria and their characterization for bacteriocin production in the oral cavity. Saudi J Biol Sci 29(1):318–323

    Article  CAS  PubMed  Google Scholar 

  • Alimohamadi Y, Sepandi M, Taghdir M, Hosamirudsari H (2020) Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. J Prev Med Hyg 61(3):304–312. https://doi.org/10.15167/2421-4248/jpmh2020.61.3.1530

    Article  Google Scholar 

  • Almeida VDSM, Azevedo J, Leal HF, Queiroz ATLD, da Silva Filho HP, Reis JN (2020) Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS ONE 15(9):e0239664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsowaida YS, Benitez G, Bin Saleh K, Almangour TA, Shehadeh F, Mylonakis E (2022) Effectiveness and safety of ceftriaxone compared to standard of care for treatment of bloodstream infections due to methicillin-susceptible Staphylococcus aureus: a systematic review and meta-analysis. Antibiotics 11(3):375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV (2020) Tackling multidrug resistance in streptococci—from novel biotherapeutic strategies to nanomedicines. Front Microbiol 11:579916

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayeni FA, Odumosu BT (2016) False identification of other microorganisms as Staphylococcus aureus in Southern Nigeria. Trop J Pharm Res 15(9):1941–1945

    Article  Google Scholar 

  • Ayi B (2007) Infections caused by viridans streptococci

  • Bale BF, Doneen AL, Vigerust DJ (2017) High-risk periodontal pathogens contribute to the pathogenesis of atherosclerosis. Postgrad Med J 93(1098):215–220. https://doi.org/10.1136/postgradmedj-2016-134279

    Article  PubMed  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/J.JPHA.2015.11.005

    Article  PubMed  Google Scholar 

  • Batinovic S, Wassef F, Knowler SA, Rice DT, Stanton CR, Rose J, Franks AE (2019) Bacteriophages in natural and artificial environments. Pathogens 8(3):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessa LJ, Botelho J, Machado V, Alves R, Mendes JJ (2022) Managing oral health in the context of antimicrobial resistance. Int J Environ Res Public Health 19(24):16448

    Article  PubMed  PubMed Central  Google Scholar 

  • Breakwell D, MacDonald B, Woolverton C, Smith K, Robison R (2007) Colony morphology protocol. In: Proceedings of the 14th American Society for Microbiology Conference for Undergraduate Educators (ASMCUE), Buffalo, NY, USA

    Google Scholar 

  • Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DM, Jespersen MG, Walker MJ (2023) Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 21(7):1–17

    Article  Google Scholar 

  • Burckhardt I, Panitz J, Burckhardt F, Zimmermann S (2017) Identification of Streptococcus pneumoniae: development of a standardized protocol for optochin susceptibility testing using total lab automation. Biomed Res Int 2017:1–7

    Article  Google Scholar 

  • Casey E, Van Sinderen D, Mahony J (2018) In vitro characteristics of phages to guide ’real life ’ phage therapy suitability. Viruses 10(4):163

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamat-Hedemand S, Dahl A, Østergaard L, Arpi M, Fosbøl E, Boel J, Bruun NE (2020) Prevalence of infective endocarditis in streptococcal bloodstream infections is dependent on streptococcal species. Circulation 142(8):720–730

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang Y, Li D, Li L, Xiao Q, Zhou Q (2012) Draft genome sequence of Brevibacillus brevis strain X23, a biocontrol agent against bacterial wilt. J Bacteriol 194(23):6634–6635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cillóniz C, Garcia-Vidal C, Ceccato A, Torres A (2018) Antimicrobial resistance among Streptococcus pneumoniae. In: Fong W, Shlaes D, Drlica K (eds) Antimicrobial Resistance in the 21st Century. Springer International Publishing, Cham, pp 13–38

    Chapter  Google Scholar 

  • Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1(1):31–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Contaldo M, D’Ambrosio F, Ferraro GA, Di Stasio D, Di Palo MP, Serpico R, Simeone M (2023) Antibiotics in dentistry: a narrative review of the evidence beyond the myth. Int J Environ Res Public Health 20(11):6025

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornejo Ulloa P, van der Veen MH, Krom BP (2019) modulation of the oral microbiome by the host to promote ecological balance. Odontology 107:437–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Czajkowski R, Jackson RW, Lindow SE (2019) Environmental bacteriophages: from biological control applications to directed bacterial evolution. Front Microbiol 10:1830

    Article  PubMed  PubMed Central  Google Scholar 

  • Deekshit VK, andSrikumar, S. (2022) ‘To be, or not to be’—The dilemma of ‘silent’antimicrobial resistance genes in bacteria. J Appl Microbiol 133(5):2902–2914

    Article  PubMed  Google Scholar 

  • Deo PN, Deshmukh R (2019) Oral microbiome: unveiling the fundamentals. J Oral Maxillofac Pathol 23(1):122–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Doern CD, Carey-Ann BD (2010) It’s not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol 48(11):3829–3835

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Toit A (2018) Silent regulators. Nat Rev Microbiol 16(7):394–395

    Article  PubMed  Google Scholar 

  • Elahi Y, Nowroozi J, Fard RMN (2021) Isolation and characterization of bacteriophages from wastewater sources on Enterococcus spp. isolated from clinical samples. Iran J Microbiol 13(5):671

    PubMed  PubMed Central  Google Scholar 

  • Evans A, Leishman SJ, Walsh LJ, Seow WK (2015) Inhibitory effects of children’s toothpastes on Streptococcus mutans, Streptococcus sanguinis and Lactobacillus acidophilus. Eur Arch Paediatr Dent 16:219–226

    Article  CAS  PubMed  Google Scholar 

  • Farzam K., Jan A (2022) Beta blockers. In StatPearls [Internet]. StatPearls Publishing.

  • Fathima B, Archer AC (2021) Bacteriophage therapy: recent developments and applications of a renaissant weapon. Res Microbiol 172(6):103863

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, andWiddicombe, J. H. (2006) Mechanisms of acid and base secretion by the airway epithelium. J Membr Biol 211:139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong K, Wong CW, Wang S, Delaquis P (2021) How broad is enough: the host range of bacteriophages and its impact on the agri-food sector. Ther, Appl, Res 2(2):83–91

    Google Scholar 

  • Foxman B, Gillespie BW, Manning SD, Marrs CF (2007) Risk factors for group B Streptococcal colonization: potential for different transmission systems by capsular type. Ann Epidemiol 17(11):854–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furfaro LL, Payne MS, Chang BJ (2020) Host range, morphological and genomic characterisation of bacteriophages with activity against clinical Streptococcus agalactiae isolates. PLoS One 15(6):e0235002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Solache M, Rice LB (2019) The enterococcus: a model of adaptability to its environment. Clin Microbiol Rev 32(2):10–1128

    Article  Google Scholar 

  • Garnett A, J., and Matthews, S. (2012) Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 13(8):739–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes MB, Rodrigues ACS, Assef AP, De Filippis I, Asensi MD, Zahner V (2011) Isolation of Brevibacillus brevis from tracheal aspirates of a hospitalized patient. APMIS 119(12):901–902

    Article  PubMed  Google Scholar 

  • Gupta A, Gupta R, Singh RL (2017) Microbes and environment. In: Singh RL (ed) Principles and applications of environmental biotechnology for a sustainable future. Springer Singapore, Singapore, pp 43–84

    Chapter  Google Scholar 

  • Hans R, Thomas S, Garla B, Dagli RJ, Hans MK (2016) Effect of various sugary beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Scientifica 2016:1–6

    Article  Google Scholar 

  • Hargreaves KR, Clokie MR (2014) Clostridium difficile phages: still difficult? Front Microbiol 5:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3(3):270–284. https://doi.org/10.3390/antibiotics3030270

    Article  PubMed Central  Google Scholar 

  • Hoare A, Marsh PD, Diaz PI (2017) Ecological therapeutic opportunities for oral diseases. Microbiol Spectr 5(4):10–1128

    Article  Google Scholar 

  • Hollasch H, Niesen WD, Bardutzky J (2019) Meningitis caused by Streptococcus agalactiae after professional tooth cleaning: first case. Case Rep Neurol 11(1):1–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Baum L, Fu WL (2010) Simple and practical staining of DNA with GelRed in agarose gel electrophoresis. Clin Lab J Clin Lab Lab Relat 56(3):149

    CAS  Google Scholar 

  • Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Cheng G (2022) Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: an overview. Antibiotics 11(4):520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 15:55–63

    Google Scholar 

  • Iszatt JJ, Larcombe AN, Chan H, Stick SM, Garratt LW, Kicic A (2021) Phage therapy for multi-drug resistant respiratory tract infections. Viruses 13(9):1809. https://doi.org/10.3390/v13091809

    Article  PubMed  PubMed Central  Google Scholar 

  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Gabard J (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (phagoburn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19(1):35–45

    Article  PubMed  Google Scholar 

  • Jeong M, Jeong DW, Lee JH (2015) Safety and biotechnological properties of Enterococcus faecalis and Enterococcus faecium isolates from meju. J Korean Soc Appl Biol Chem 58:813–820

    Article  CAS  Google Scholar 

  • Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, Ai L (2018) The oral microbiota—a mechanistic role for systemic diseases. Br Dent J 224(6):447–455

    Article  CAS  PubMed  Google Scholar 

  • Jufri RF (2020) The effect of environmental factors on microbial growth. J La Lifesci 1(1):12–17

    Article  Google Scholar 

  • Kamdem GSJN, Toukam M, Ntep DBN, Kwedi KGG, Brian NZ, Fokam ST, Messanga CB (2022) Comparison of the effect of saline mouthwash versus chlorhexidine on oral flora. Adv Oral Maxillofac Surg 6:100273

    Article  Google Scholar 

  • Kianoush N, Adler CJ, Nguyen KAT, Browne GV, Simonian M, Hunter N (2014) Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS ONE 9(3):e92940

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyuncuoglu CZ, Aydin M, Kirmizi NI, Aydin V, Aksoy M, Isli F, Akici A (2017) Rational use of medicine in dentistry: do dentists prescribe antibiotics in appropriate indications? Eur J Clin Pharm 73:1027–1032

    Article  CAS  Google Scholar 

  • Kreth J, Zhang Y, andHerzberg, M. C. (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bact 190(13):4632–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/MOLBEV/MSW054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57(10):1471–1485

    Article  CAS  PubMed  Google Scholar 

  • Le S, Yao X, Lu S, Tan Y, Rao X, Li M, Hu F (2014) Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci Rep 4(1):4738

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Kolltveit KM, Tronstad L, Olsen I (2000) Systemic diseases caused by oral infection. Clin Microbiol Rev 13(4):547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim Y, Totsika M, Morrison M, Punyadeera C (2017) Oral microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics 7(17):4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martellacci L, Quaranta G, Fancello G, D’Addona A, Sanguinetti M, Patini R, Masucci L (2020) Characterizing peri-implant and sub-gingival microbiota through culturomics. first isolation of some species in the oral cavity. a pilot study. Pathogens 9(5):365

    Article  PubMed  PubMed Central  Google Scholar 

  • Meinen A, Reuss A, Willrich N, Feig M, Noll I, Eckmanns T, Markwart R (2021) Antimicrobial resistance and the spectrum of pathogens in dental and oral-maxillofacial infections in hospitals and dental practices in Germany. Front Microbiol 12:676108

    Article  PubMed  PubMed Central  Google Scholar 

  • Mhone AL, Makumi A, Odaba J, Guantai L, Gunathilake KD, Loignon S, Svitek N (2022) Salmonella Enteritidis bacteriophages isolated from Kenyan poultry farms demonstrate time-dependent stability in environments mimicking the chicken gastrointestinal tract. Viruses 14(8):1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michodigni NF, Nyachieo A, Akhwale JK, Magoma G, Kimang’a AN (2022) Genomic evaluation of novel Kenyan virulent phage isolates infecting carbapenemase-producing Klebsiella pneumoniae and safety determination of their lysates in Balb/c mice. Arch Microbiol 204(8):532

    Article  CAS  PubMed  Google Scholar 

  • Mtshali MS, Mtshali PS (2013) Molecular diagnosis and phylogenetic analysis of Babesia bigemina and Babesia bovis hemoparasites from cattle in South Africa. BMC Vet Res. https://doi.org/10.1186/1746-6148-9-154

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutai IJ, Juma AA, Inyimili MI, Nyachieo A, Nyamache AK, Mutal I (2022) Enterobacter cloacae isolates in Kenya. Afr J Lab Med 11(1):1673. https://doi.org/10.4102/ajlm. ((Online) 2225–2010, (Print) 2225–2002)

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolich MP, Filippov AA (2020) Bacteriophage therapy: developments and directions. Antibiotics 9(3):135

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor AM, McManus BA, Kinnevey PM, Brennan GI, Fleming TE, Cashin PJ, Coleman DC (2018) Significant enrichment and diversity of the staphylococcal arginine catabolic mobile element ACME in Staphylococcus epidermidis isolates from subgingival peri-implantitis sites and periodontal pockets. Front Microbiol 9:1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Osaiyuwu O (2021) Occurrence of bacteraemia following oral and maxillofacial surgical procedures in port harcourt. Niger Afr Health Sci 21(4):1692–1700

    Article  Google Scholar 

  • Parvez N, Cornelius LK, Fader R (2009) Brevibacillus brevis peritonitis. Am J Med Sci 337(4):297–299

    Article  PubMed  Google Scholar 

  • Pedersen AML, Belstrøm D (2019) The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 80:S3–S12

    Article  Google Scholar 

  • Peechakara BV, Gupta M (2018) Ampicillin/sulbactam. Europepmc

  • Peterson BW, He Y, Ren Y, Zerdoum A, Libera MR, Sharma PK, Busscher HJ (2015) Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol Rev 39(2):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires DP, Melo LD, Boas DV, Sillankorva S, Azeredo J (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56

    Article  CAS  PubMed  Google Scholar 

  • Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J (2020) Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev 44(6):684–700

    Article  CAS  PubMed  Google Scholar 

  • Pradeep AN, Ramasamy S, Veniemilda JK, Kumar CV (2022) Effect of PH and temperature variations on phage stability—a crucial prerequisite for successful phage therapy. Int J Pharm Sci Res 13:5178–5182

    CAS  Google Scholar 

  • Primandiri PR, Amin M, Zubaidah S, Santoso AM (2021) Sequences of trypsin inhibitor gene on Jatropha curcas L. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/743/1/012076

    Article  Google Scholar 

  • Radaic A, Kapila YL (2021) The oralome and its dysbiosis: new insights into oral microbiome-host interactions. Comput Struct Biotechnol J 19:1335–1360. https://doi.org/10.1016/j.csbj.2021.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL (2021) Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontology 2000 87(1):76–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Islam MN, Islam MN, Hossain MS (2015) Isolation and identification of oral bacteria and characterization for bacteriocin production and antimicrobial sensitivity. Dhaka Univ J Pharm Sci 14(1):103–109

    Article  CAS  Google Scholar 

  • Ramesh N, Archana L, Madurantakam Royam M, Manohar P, Eniyan K (2019) Effect of various bacteriological media on the plaque morphology of Staphylococcus and vibrio phages. Access Microbiol 1(4):e000036

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramu C, Padmanabhan TV (2012) Indications of antibiotic prophylaxis in dental practice—review. Asian Pac J Trop Biomed 2(9):749–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodela ML, Sabet S, Peterson A, Dillon JG (2019) Broad environmental tolerance for a Salicola host-phage pair isolated from the cargill solar saltworks, Newark, CA, USA. Microorganisms 7(4):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lazaro D, Hernandez M, Campo RD, Mayo B, Flórez AB (2017) Antibiotic resistance-susceptibility profiles of Streptococcus thermophilus isolated from raw milk and genome analysis of the genetic basis of acquired resistances. Front Microbiol 8:2608. https://doi.org/10.3389/fmicb.2017.02608

    Article  Google Scholar 

  • Ruby J, Barbeau J (2002) The buccale puzzle: The symbiotic nature of endogenous infections of the oral cavity. Can J Infect Dis 13(1):34–41. https://doi.org/10.1155/2002/492656

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandvik EL, McLeod BR, Parker AE, Stewart PS (2013) Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS ONE 8(2):e55118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sbordone L, Bortolaia C (2003) Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Invest 7:181–188

    Article  Google Scholar 

  • Shields P, Cathcart L (2010) Oxidase test protocol. American Society for Microbiology, pp 1–9

    Google Scholar 

  • Shrimali T, Malhotra S, Relhan N, Tak V, Choudhary SK, Gupta N, Singh AK (2023) Streptococcus parasanguinis: an emerging pathogen causing neonatal endocarditis: a case report. Access Microbiol. https://doi.org/10.1099/acmi.0.000576.v4

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AC, Hussey MA (2005) Gram stain protocols. Am Soc Microbiol 1(14):113–144

    Google Scholar 

  • Steier L, De Oliveira SD, De Figueiredo JAP (2019) Bacteriophages in dentistry—state of the art and perspectives. Dent J 7(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart EJ, Payne DE, Ma TM, VanEpps JS, Boles BR, Younger JG, Solomon MJ (2017) Effect of antimicrobial and physical treatments on growth of multispecies staphylococcal biofilms. Appl Environ Microbiol 83(12):e03483–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Suleiman SA, Song F, Su M, Hang T, Song M (2017) Analysis of bacitracin and its related substances by liquid chromatography-tandem mass spectrometry. J Pharm Anal 7(1):48–55

    Article  PubMed  Google Scholar 

  • Szafrański SP, Winkel A, Stiesch M (2017) The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 250:29–44

    Article  PubMed  Google Scholar 

  • Takahashi N (2005) Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser 1284:103–112

    Article  CAS  Google Scholar 

  • Tan L, Zhong MM, Liu Q, Chen Y, Zhao YQ, Zhao J, Dusenge MA, Feng Y, Ye Q, Hu J, Ou-Yang ZY (2023) Potential interaction between the oral microbiota and COVID-19: a meta-analysis and bioinformatics prediction. Front Cell Infect Microbiol 13:1193340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2003) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform 1:2–3

    Google Scholar 

  • Tweya Omwega M, Maingi MJ, Kebira Nyamache A, Nyachieo A (2021) Safety and efficacy assessment of bacteriophages isolated from Kibera, Kenya wastewater plant, against multidrug-resistant Pseudomonas aeruginosa infection in BALB/c mice. Am J Infect Dis Microbiol 10(1):11–21. https://doi.org/10.12691/ajidm-10-1-3

    Article  Google Scholar 

  • Van Thuoc D, Hien TT, Sudesh K (2019) Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. Ann Microbiol 69(8):819–828

    Article  Google Scholar 

  • Villedieu A, Diaz-Torres ML, Roberts AP, Hunt N, McNab R, Spratt DA, Mullany P (2004) Genetic basis of erythromycin resistance in oral bacteria. Antimicrob Agents Chemother 48(6):2298–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters M,Tadi P (2022) Genetics, Female Gametogenesis. In StatPearls [Internet], StatPearls Publishing

  • Wilson M, Martin R, Walk ST, Young C, Grossman S, McKean EL, Aronoff DM (2012) Clinical and laboratory features of Streptococcus salivarius meningitis: a case report and literature review. Clin Med Res 10(1):15–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Wo S, Dubrovskaya Y, Siegfried J, Papadopoulos J, Jen SP (2021) Clinical outcomes of ceftriaxone vs penicillin g for complicated viridans group streptococci bacteremia. Open Forum Infect Dis. https://doi.org/10.1093/ofid/ofaa542

    Article  PubMed  Google Scholar 

  • Xian P, Xuedong Z, Xin X, Yuqing L, Yan L, Jiyao L, Xiaoquan S, Shi H, Jian X, Ga L (2018) The oral microbiome bank of China. Int J Oral Sci 10(2):1–9. https://doi.org/10.1038/s41368-018-0018-x

    Article  Google Scholar 

  • Yamaki S, Omachi T, Kawai Y, Yamazaki K (2014) Characterization of a novel Morganella morganii bacteriophage FSP1 isolated from river water. FEMS Microbiol Lett 359(2):166–172

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Yousef AE (2018) Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol 34:1–10

    Article  Google Scholar 

  • Yumoto H, Hirota K, Hirao K, Ninomiya M, Murakami K, Fujii H, Miyake Y (2019) The pathogenic factors from oral streptococci for systemic diseases. Int J Mol Sci 20(18):4571. https://doi.org/10.3390/ijms20184571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaatout N (2021) Presence of non-oral bacteria in the oral cavity. Arch Microbiol 203(6):2747–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Cui TT, Li PL, Liang NJ, Liu SC, Ma CW, Peng ZH (2008) Modeling and predicting the effect of temperature, water activity, and pH on the growth of Streptococcus iniae in Tilapia. J Appl Microbiol 105(6):1956–1965. https://doi.org/10.1111/J.1365-2672.2008.03969.X

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang Q, Zhang C, Cheung GS, Shen Y (2010) Prevalence, phenotype, and genotype of Enterococcus faecalis isolated from saliva and root canals in patients with persistent apical periodontitis. J Endod 36(12):1950–1955

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Beatrice Chepchumba performed material preparation, data collection and analysis. Beatrice Chepchumba wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Beatrice Chepchumba.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was approved by the Kenyatta University Ethical committee. Research approval was sought from the National commission for science and Technology (NACOSTI)

Additional information

Communicated by Ran Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepchumba, B., Asudi, G.O., Katana, J. et al. Isolation of phages against Streptococcus species in the oral cavity for potential control of dental diseases and associated systemic complications. Arch Microbiol 206, 175 (2024). https://doi.org/10.1007/s00203-024-03897-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03897-6

Keywords

Navigation