Skip to main content

Advertisement

Log in

Postoperative Bisphosphonates Use is Associated with Reduced Adverse Outcomes After Primary Total Joint Arthroplasty of Hip and Knee: A Nationwide Population-Based Cohort Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bisphosphonates have been associated with a decreased risk of revision surgery after total joint arthroplasty of the hip or knee (TJA) because of their effects on decreased periprosthetic bone loss and prosthetic migration. However, the results in the early literature are inconsistent, and the influence of bisphosphonates on associated complications and subsequent TJA remains unknown. This study investigated the association between the use of bisphosphonates and the risk of adverse outcomes after primary TJA. This matched cohort study utilized the National Health Insurance Research Database in Taiwan to identify patients who underwent primary TJA over a 15-year period (January 2000–December 2015 inclusive). Study participants were further categorized into two groups, bisphosphonate users and nonusers, using propensity score matching. The Kaplan–Meier curve analysis and adjusted hazard ratios (aHRs) of revision surgery, adverse outcomes of primary surgery and subsequent TJA were calculated using Cox regression analysis. This study analyzed data from 6485 patients who underwent total hip arthroplasty (THA) and 20,920 patients who underwent total knee arthroplasty (TKA). The risk of revision hip and knee arthroplasty was significantly lower in the bisphosphonate users than in the nonusers (aHR, 0.54 and 0.53, respectively). Furthermore, the risk of a subsequent total joint arthroplasty, adverse events and all-cause mortality were also significantly reduced in the bisphosphonate users. This study, involving a large cohort of patients who underwent primary arthroplasties, revealed that bisphosphonate treatment may potentially reduce the risk of revision surgery and associated adverse outcomes. Furthermore, the use of bisphosphonates after TJA is also associated with a reduced need for subsequent arthroplasty.

Research Registration Unique Identifying Number (UIN): ClinicalTrials.gov Identifier—NCT05623540 (https://clinicaltrials.gov/show/NCT05623540).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from National Health Insurance Research Database, which belongs to Health and Welfare Data Science Center, Ministry of Health and Welfare, Taiwan. Restrictions apply to the availability of these data, which were used under license for this study. Data are only available with the permission of National Health Insurance Research Database.

References

  1. Chen A, Gupte C, Akhtar K, Smith P, Cobb J (2012) The global economic cost of osteoarthritis: how the UK compares. Arthritis 2012:698709. https://doi.org/10.1155/2012/698709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2163–2196. https://doi.org/10.1016/s0140-6736(12)61729-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murray CJL (2013) The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA 310(6):591. https://doi.org/10.1001/jama.2013.13805

    Article  CAS  PubMed  Google Scholar 

  4. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73(7):1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763

    Article  PubMed  Google Scholar 

  5. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N et al (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16(2):137–162. https://doi.org/10.1016/j.joca.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  6. Harris WH, Sledge CB (1990) Total hip and total knee replacement (1). N Engl J Med 323(11):725–731. https://doi.org/10.1056/NEJM199009133231106

    Article  CAS  PubMed  Google Scholar 

  7. Murphy LB, Helmick CG, Schwartz TA, Renner JB, Tudor G, Koch GG et al (2010) One in four people may develop symptomatic hip osteoarthritis in his or her lifetime. Osteoarthritis Cartilage 18(11):1372–1379. https://doi.org/10.1016/j.joca.2010.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Losina E, Thornhill TS, Rome BN, Wright J, Katz JN (2012) The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint Surg Am 94(3):201–207. https://doi.org/10.2106/JBJS.J.01958

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785. https://doi.org/10.2106/JBJS.F.00222

    Article  PubMed  Google Scholar 

  10. Patel A, Pavlou G, Mújica-Mota RE, Toms AD (2015) The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J. 97-B(8):1076–81. https://doi.org/10.1302/0301-620x.97b8.35170

    Article  CAS  PubMed  Google Scholar 

  11. Havelin LI, Engesaeter LB, Espehaug B, Furnes O, Lie SA, Vollset SE (2000) The Norwegian arthroplasty register: 11 years and 73,000 arthroplasties. Acta Orthop Scand 71(4):337–353. https://doi.org/10.1080/000164700317393321

    Article  CAS  PubMed  Google Scholar 

  12. Vasso M, Beaufils P, Cerciello S, Schiavone PA (2014) Bone loss following knee arthroplasty: potential treatment options. Arch Orthop Trauma Surg 134(4):543–553. https://doi.org/10.1007/s00402-014-1941-8

    Article  PubMed  Google Scholar 

  13. Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9(Suppl 1):S6. https://doi.org/10.1186/ar2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Russell RGG (2011) Bisphosphonates: the first 40 years. Bone 49(1):2–19. https://doi.org/10.1016/j.bone.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  15. Shanbhag AS (2006) Use of bisphosphonates to improve the durability of total joint replacements. J Am Acad Orthop Surg 14(4):215–225. https://doi.org/10.5435/00124635-200604000-00003

    Article  PubMed  Google Scholar 

  16. Hilding M, Aspenberg P (2007) Local peroperative treatment with a bisphosphonate improves the fixation of total knee prostheses: a randomized, double-blind radiostereometric study of 50 patients. Acta Orthop 78(6):795–799. https://doi.org/10.1080/17453670710014572

    Article  PubMed  Google Scholar 

  17. Hilding M, Aspenberg P (2006) Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop 77(6):912–916. https://doi.org/10.1080/17453670610013213

    Article  PubMed  Google Scholar 

  18. Thillemann TM, Pedersen AB, Mehnert F, Johnsen SP, Søballe K (2010) Postoperative use of bisphosphonates and risk of revision after primary total hip arthroplasty: a nationwide population-based study. Bone 46(4):946–951. https://doi.org/10.1016/j.bone.2010.01.377

    Article  CAS  PubMed  Google Scholar 

  19. Prieto-Alhambra D, Javaid MK, Judge A, Murray D, Carr A, Cooper C et al (2011) Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ 343:d7222. https://doi.org/10.1136/bmj.d7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teng S, Yi C, Krettek C, Jagodzinski M (2015) Bisphosphonate use and risk of implant revision after total hip/knee arthroplasty: a meta-analysis of observational studies. PLoS ONE 10(10):e0139927. https://doi.org/10.1371/journal.pone.0139927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansson U, Toksvig-Larsen S, Ryd L, Aspenberg P (2009) Once-weekly oral medication with alendronate does not prevent migration of knee prostheses: a double-blind randomized RSA study. Acta Orthop 80(1):41–45. https://doi.org/10.1080/17453670902804968

    Article  PubMed  PubMed Central  Google Scholar 

  22. Walsh DA, Chapman V (2011) Bisphosphonates for osteoarthritis. Arthritis Res Ther 13(5):128. https://doi.org/10.1186/ar3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP et al (2014) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg 12(12):1495–1499. https://doi.org/10.1016/j.ijsu.2014.07.013

    Article  Google Scholar 

  24. Prieto-Alhambra D, Lalmohamed A, Abrahamsen B, Arden NK, de Boer A, Vestergaard P et al (2014) Oral bisphosphonate use and total knee/hip implant survival: validation of results in an external population-based cohort: bisphosphonate use and implant survival. Arthritis Rheumatol 66(11):3233–3240. https://doi.org/10.1002/art.38789

    Article  CAS  PubMed  Google Scholar 

  25. Kozma C, Dickson Phillips, Meletiche. (2013) Medication possession ratio: implications of using fixed and variable observation periods in assessing adherence with disease-modifying drugs in patients with multiple sclerosis. Patient Prefer Adherence. https://doi.org/10.2147/ppa.s40736

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fu S-H, Wang C-Y, Yang R-S, Wu F-LL, Hsiao F-Y (2017) Bisphosphonate use and the risk of undergoing total knee arthroplasty in osteoporotic patients with osteoarthritis: a nationwide cohort study in Taiwan. J Bone Joint Surg Am. 99(11):938–46. https://doi.org/10.2106/JBJS.16.00385

    Article  PubMed  Google Scholar 

  27. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45(6):613–619. https://doi.org/10.1016/0895-4356(92)90133-8

    Article  CAS  PubMed  Google Scholar 

  28. National Joint Registry. National Joint Registry for England and Wales. 2009

  29. Paling IH (2000) Wear in total hip and knee replacements. J Bone Joint Surg-Am Volume 82(12):1806. https://doi.org/10.2106/00004623-200012000-00020

    Article  CAS  Google Scholar 

  30. Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D et al (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50(11):3516–3525. https://doi.org/10.1002/art.20627

    Article  PubMed  Google Scholar 

  31. Vaysbrot EE, Osani MC, Musetti M-C, McAlindon TE, Bannuru RR (2018) Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage 26(2):154–164. https://doi.org/10.1016/j.joca.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  32. Kiyomoto K, Iba K, Hanaka M, Ibe K, Hayakawa H, Teramoto A et al (2020) High bone turnover state under osteoporotic changes induces pain-like behaviors in mild osteoarthritis model mice. J Bone Miner Metab 38(6):806–818. https://doi.org/10.1007/s00774-020-01124-y

    Article  CAS  PubMed  Google Scholar 

  33. Fernández-Martín S, López-Peña M, Muñoz F, Permuy M, González-Cantalapiedra A (2021) Bisphosphonates as disease-modifying drugs in osteoarthritis preclinical studies: a systematic review from 2000 to 2020. Arthritis Res Ther 23(1):60. https://doi.org/10.1186/s13075-021-02446-6

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27(2):302–345. https://doi.org/10.1128/CMR.00111-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verdrengh M, Carlsten H, Ohlsson C, Tarkowski A (2007) Addition of bisphosphonate to antibiotic and anti-inflammatory treatment reduces bone resorption in experimental Staphylococcus aureus-induced arthritis. J Orthop Res 25(3):304–310. https://doi.org/10.1002/jor.20317

    Article  CAS  PubMed  Google Scholar 

  36. Hiltunen AK, Vuorela PM (2014) Fallarero bisphosphonates offer protection against prosthetic joint infections caused by Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Drug Deliv Sci Technol 27:302–345. https://doi.org/10.1128/CMR.00111-13

    Article  CAS  Google Scholar 

  37. Benkovich V, Klassov Y, Mazilis B, Bloom S (2020) Periprosthetic fractures of the knee: a comprehensive review. Eur J Orthop Surg Traumatol 30(3):387–399. https://doi.org/10.1007/s00590-019-02582-5

    Article  PubMed  Google Scholar 

  38. Ramavath A, Lamb JN, Palan J, Pandit HG, Jain S (2020) Postoperative periprosthetic femoral fracture around total hip replacements: current concepts and clinical outcomes. EFORT Open Rev 5(9):558–567. https://doi.org/10.1302/2058-5241.5.200003

    Article  PubMed  PubMed Central  Google Scholar 

  39. MacKenzie SA, Ng RT, Snowden G, Powell-Bowns MFR, Duckworth AD, Scott CEH (2019) Periprosthetic atypical femoral fractures exist and are associated with duration of bisphosphonate therapy. Bone Joint J 101(10):1285–91. https://doi.org/10.1302/0301-620X.101B10.BJJ-2019-0599.R2

    Article  PubMed  Google Scholar 

  40. Ben-Shlomo Y, Blom A, Boulton C, Brittain R, Clark E, Craig R, et al. The National Joint Registry 16th Annual Report 2019. https://pubmed.ncbi.nlm.nih.gov/32744812/

  41. Nasser AAH, Chauhan G, Osman K, Nandra S, Nandra R, Mahmood A (2021) Study protocol for a national retrospective review of femoral periprosthetic fracture management. Is there variation in practice? J Surg Protoc Res Methodol. https://doi.org/10.1093/jsprm/snab004

    Article  Google Scholar 

  42. Tai TW, Huang CF, Huang HK, Yang RS, Chen JF, Cheng TT et al (2023) Clinical practice guidelines for the prevention and treatment of osteoporosis in Taiwan: 2022 update. J Formos Med Assoc. https://doi.org/10.1016/j.jfma.2023.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  43. Holzer LA, Borotschnig L, Holzer G (2023) Evaluation of FRAX in patients with periprosthetic fractures following primary total hip and knee arthroplasty. Sci Rep 13(1):7145. https://doi.org/10.1038/s41598-023-34230-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dózsai D, Ecseri T, Csonka I, Gárgyán I, Doró P, Csonka Á (2020) Atypical periprosthetic femoral fracture associated with long-term bisphosphonate therapy. J Orthop Surg Res 15(1):414. https://doi.org/10.1186/s13018-020-01941-x

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ro C, Cooper O (2013) Bisphosphonate drug holiday: choosing appropriate candidates. Curr Osteoporos Rep 11(1):45–51. https://doi.org/10.1007/s11914-012-0129-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hooper GJ, Rothwell AG, Stringer M, Frampton C (2009) Revision following cemented and uncemented primary total hip replacement. J Bone Joint Surg Br Volume 91-B(4):451–8. https://doi.org/10.1302/0301-620X.91B4.21363

    Article  Google Scholar 

  47. Okike K, Chan PH, Prentice HA, Paxton EW, Burri RA (2020) Association between uncemented vs cemented hemiarthroplasty and revision surgery among patients with hip fracture. JAMA 323(11):1077. https://doi.org/10.1001/jama.2020.1067

    Article  PubMed  PubMed Central  Google Scholar 

  48. Konan S, Abdel MP, Haddad FS (2019) Cemented versus uncemented hip implant fixation. Bone Joint Res 8(12):604–607. https://doi.org/10.1302/2046-3758.812.BJR-2019-0337

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the Health and Welfare Data Science Center, Ministry of Health and Welfare (HWDC, MOHW), Taiwan, for providing the National Health Insurance Research Database (NHIRD).

Funding

This study was supported by the Tri-Service General Hospital Research Foundation (Grant Number: TSGH-D-110103).

Author information

Authors and Affiliations

Authors

Contributions

S-HW: Conceptualization, Supervision; J-TS: Writing—Original draft preparation; TLT: Writing—Reviewing and Editing; P-HS: Methodology; T-TY: Visualization, Investigation; C-CW: Project administration; R-YP: Validation; W-CC: Resources, Data curation; C-HC: Software, Formal analysis.

Corresponding author

Correspondence to Sheng-Hao Wang.

Ethics declarations

Conflict of interest

Jen-Ta Shih, Timothy L Tan, Pei-Hung Shen, Tsu-Te Yeh, Chia-Chun Wu, Ru-Yu Pan, Wu-Chien Chien, Chi-Hsiang Chung, Sheng-Hao Wang have no relevant financial or non-financial interests to disclose.

Ethical Approval

The study protocol was approved by the Institutional Review Board of Tri-Service General Hospital, National Defense Medical Center (Approval No.: B-111-05). All procedures were performed in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and Animal Rights and Informed Consent

This database study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The informed conset was waived because this study invovled no more than minimal riskand used de-idetification data. The IRB of National Defense Medical Center approved this study (approval No. B-111-05).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, JT., Tan, T.L., Shen, PH. et al. Postoperative Bisphosphonates Use is Associated with Reduced Adverse Outcomes After Primary Total Joint Arthroplasty of Hip and Knee: A Nationwide Population-Based Cohort Study. Calcif Tissue Int 114, 451–460 (2024). https://doi.org/10.1007/s00223-024-01192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-024-01192-6

Keywords

Navigation