Skip to main content
Log in

\(C^{1,\alpha }\)-regularity for p-harmonic functions on SU(3) and semi-simple Lie groups

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

In this paper, when \(1<p<2\), we establish the \(C^{1,\alpha }_{\,\textrm{loc}\,}\)-regularity of weak solutions to the degenerate subelliptic p-Laplacian equation

$$\begin{aligned} \triangle _{{{\mathcal {H}}},p}u(x)=\sum \limits _{i=1}^6X^*_i(|{\nabla _{{{\mathcal {H}}}}u}|^{p-2}X_iu)=0 \end{aligned}$$

on SU(3) endowed with the horizontal vector fields \(X_1,\dots ,X_6\). The result can be extended to a class of compact connected semi-simple Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capogna, L., Citti, G., Rea, G.: A subelliptic analogue of Aronson–Serrin’s Harnack inequality. Math. Ann. 357, 1175–1198 (2013)

    Article  MathSciNet  Google Scholar 

  2. Chow, W.L.: Über systeme von linearen partiellen differentialgleichungen erster ordnung. Math. Ann. 117, 98–105 (1939)

    Article  MathSciNet  Google Scholar 

  3. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3, 25–43 (1957)

    MathSciNet  Google Scholar 

  4. Domokos, A., Manfredi, J.J.: \(C^{1,\alpha }\)-regularity for \(p\)-harmonic functions in the Heisenberg group for \(p\) near 2. Contemp. Math. 370, 17–23 (2005)

    Article  Google Scholar 

  5. Domokos, A., Manfredi, J.J.: \(C^{1,\alpha }\)-subelliptic regularity on \(\rm SU(3)\) and compact, semi-simple Lie groups. Anal. Math. Phys. 10, 1664–2368 (2020)

    Article  Google Scholar 

  6. Domokos, A., Manfredi, J.J.: Nonlinear subelliptic equations. Manuscr. Math. 130, 251–271 (2009)

    Article  MathSciNet  Google Scholar 

  7. Domokos, A., Manfredi, J.J.: Subelliptic cordes estimates. Proc. Am. Math. Soc. 133, 1047–1056 (2005)

    Article  MathSciNet  Google Scholar 

  8. Evans, L.C.: A new proof of local \(C^{1,\alpha }\)-regularity for solutions of certain degenerate elliptic P.D.E. J. Differ. Equ. 45, 356–373 (1982)

    Article  ADS  Google Scholar 

  9. Giusti, E.: Direct Methods in the Calculus of Variation. World Scientific Publishing Co. Inc., River Edge (2003). https://doi.org/10.1142/9789812795557

    Book  Google Scholar 

  10. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000)

    Google Scholar 

  11. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  12. Kinnunen, J., Marola, N., Miranda, M., Jr., Paronetto, F.: Harnack’s inequality for parabolic De Giorgi classes in metric space. Adv. Differ. Equ. 17, 801–832 (2012)

    MathSciNet  Google Scholar 

  13. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York-London (1968)

    Google Scholar 

  14. Lewis, J.L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32, 849–858 (1983)

    Article  MathSciNet  Google Scholar 

  15. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Uralcprime tseva for elliptic equations. Commun. Part. Diff. Equ. 16, 311–361 (1991)

    Article  Google Scholar 

  16. Manfredi, J.J., Mingione, G.: Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 339, 485–544 (2007)

    Article  MathSciNet  Google Scholar 

  17. Mingione, G., Zatorska-Goldstein, A., Zhong, X.: Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 222, 62–129 (2009)

    Article  MathSciNet  Google Scholar 

  18. Mukherjee, S., Zhong, X.: \(C^{1,\alpha }\)-regularity for variational problems in the Heisenberg group. Anal. PDE 14, 567–594 (2021)

    Article  MathSciNet  Google Scholar 

  19. Mukherjee, S.: On local Lipschitz regularity for quasilinear equations in the Heisenberg group. Nonlinear Anal. 212, 0362-546X (2021)

    Article  MathSciNet  Google Scholar 

  20. Ricciotti, D.: \(p\)-Laplace Equation in the Heisenberg Group. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-23790-9

    Book  Google Scholar 

  21. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. Uhlenbeck, K.K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MathSciNet  Google Scholar 

  23. Ural’ceva, N.N.: Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 7, 184–222 (1968)

    MathSciNet  Google Scholar 

  24. Varopoulos, NTh., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  25. Zhong, X.: Regularity for variational problems in the Heisenberg group (2017). Arxiv preprint: https://arxiv.org/abs/1711.03284

Download references

Acknowledgements

The author would like to express his gratitude to Yuan Zhou and Fa Peng for their fruitful discussions. This work is supported by the National Natural Science Foundation of China (No. 12025102, No. 11871088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following lemma is [13, Lemma 4.7], which will be used to prove Lemma 3.3.

Lemma 8.3

For a non-negative sequence \(\{y_l\}_{l=0,1,2,\dots }\) , \( y_{l+1}\le c_0 b^l_0 y^{1+\varepsilon }_l \) implies that

$$\begin{aligned} y_l\le c^{\frac{(1+\varepsilon )^l-1}{\varepsilon }}_0b^{\frac{(1 +\varepsilon )^l-1}{\varepsilon ^2}-\frac{l}{\varepsilon }}_0y^{(1+\varepsilon )^l}_0, \end{aligned}$$

where \(c_0>0\) , \(\varepsilon >0\) and \(b_0>1\).

Moreover, if \( y_0\le \theta =c^{-\frac{1}{\varepsilon }}_0b^{-\frac{1}{\varepsilon ^2}}_0, \) then \( y_l\le \theta b^{-\frac{l}{\varepsilon }}_0. \) Consequently, \(y_l\rightarrow 0\) as \(l\rightarrow \infty \).

Proof of Lemma 3.3

For any \(b\in (0,1)\), letting \(\rho _h={\frac{\rho }{2}}+{\frac{\rho }{2^{h+1}}},\ \rho =\rho _h,\ \rho '=\rho _{h+1}\) and \(k_h=k+bH-b^{h+1}H\) in (3.1), we have

$$\begin{aligned} \int _{A^+_{k_{h},\rho _{h+1}}}|\nabla _{{\mathcal {H}}}{u}|^2dx&\le {\frac{\gamma }{(\rho _h-\rho _{h+1})^2}}\int _{A^+_{k_{h}, \rho _h}}|u-k|^2dx+\chi ^2|{A^+_{k_{h},\rho _h}}|^{1-2/q}\nonumber \\&\le {\frac{2^{2h+4}\gamma }{\rho ^2}}|{A^+_{k_{h},\rho _h}}|H^2 +\chi ^2|{A^+_{k_{h},\rho _h}}|^{1-2/q}, \end{aligned}$$
(8.7)

where \(h=0,1,2,\dots \) and \(q>Q=10\).

The following inequality comes from [12, Lemma 2.3]

$$\begin{aligned} (l-k)|A^+_{l,\rho }|^{1-\frac{1}{Q}}\le \frac{C\rho |B_\rho |^{1 -1/Q}}{|B_\rho \setminus A^+_{k,\rho }|}\int _{A^+_{k,\rho } \setminus A^+_{l,\rho }} |{\nabla _{{{\mathcal {H}}}}}u|dx. \end{aligned}$$
(8.8)

Letting \(l=k_{h+1}\), \(k=k_{h}\) and \(\rho =\rho _{h+1}\) in (8.8), we have

$$\begin{aligned} (k_{h+1}-k_{h})|A^+_{k_{h+1},\rho _{h+1}}|^{1-\frac{1}{Q}} \le \frac{C\rho _{h+1}|B_{\rho _{h+1}}|^{1-1/Q}}{|B_{\rho _{h+1}} \setminus A^+_{k_h,{\rho _{h+1}}}|}\int _{A^+_{k_h,{\rho _{h+1}}} \setminus A^+_{k_{h+1},{\rho _{h+1}}}} |{\nabla _{{{\mathcal {H}}}}}u|dx.\nonumber \\ \end{aligned}$$
(8.9)

The condition that \(|{A^+_{k,\rho }}|\le \theta _1|B_\rho |\) shows that

$$\begin{aligned} |_{A^+_{k_{h},\rho _{h+1}}}|\le |A^+_{k,\rho }|\le {C}2^Q\theta _1|B_{\rho _{h+1}}|. \end{aligned}$$

From this, we choose \(\theta _1\) small enough such that \({C}2^Q\theta _1\le 1/2\). Then (8.9) becomes

$$\begin{aligned} (b^{h+1}-b^{h+2})H|A^+_{k_{h+1},\rho _{h+1}}|^{1-\frac{1}{Q}} \le \frac{C\rho _{h+1}}{|B_{\rho _{h+1}}|^{1/Q}}\int _{A^+_{k_{h},\rho _{h+1}}}|\nabla _{{\mathcal {H}}}{u}|dx. \end{aligned}$$
(8.10)

Applying Hölder’s inequality to (8.10), then combining (8.7), from the assumption that \(H=\mathop {\sup }\limits _{B_\rho }u(x)-k\ge \chi \rho ^{1-Q/q}\), we have

$$\begin{aligned} (b^{h+1}-b^{h+2})^2H^2|A^+_{k_{h+1},\rho _{h+1}}|^{2-\frac{2}{Q}}&\le {C}|{A^+_{k_{h},\rho _{h+1}}}|\int _{A^+_{k_{h},\rho _{h+1}}}|\nabla _{{\mathcal {H}}}{u}|^2dx\nonumber \\&\le {C}|{A^+_{k_{h},\rho _h}}|^{2-{\frac{2}{q}}}\left( \frac{2^{2h}\gamma }{\rho ^2}|{A^+_{k_{h},\rho _h}}|^{\frac{2}{q}}+\frac{\chi ^2}{H^2}\right) H^2\nonumber \\&\le {C}2^{2h}(1+\gamma )H^2\rho ^{{\frac{2Q}{q}}-2}|{A^+_{k_{h},\rho _h}}|^{2-{\frac{2}{q}}}. \end{aligned}$$

Here for any ball \(B_\rho \) we use [24, Theorem V.4.1 on P69] to control its volume, that is, \(C_1 \rho ^Q \le |B_\rho | \le C_2 \rho ^Q\). Thus

$$\begin{aligned} \left( \frac{|A^+_{k_{h+1},\rho _{h+1}}|}{\rho ^Q}\right) ^{1-{\frac{1}{Q}}} \le {C}2^{h}(1-b)^{-1}b^{-h-1}(1+\gamma )^{\frac{1}{2}}\left( \frac{| {A^+_{k_{h},\rho _h}}|}{\rho ^Q}\right) ^{1-{\frac{1}{q}}}. \end{aligned}$$
(8.11)

Denote

$$\begin{aligned} \mu _h=\frac{|{A^+_{k_{h},\rho _h}}|}{\rho ^Q}\ {{\textrm{and}}}\ \mu _0=\frac{|{A^+_{k,\rho }}|}{\rho ^Q}\le {C}\theta _1. \end{aligned}$$

From (8.11), by Lemma 8.3 with \(y_l=\mu _h\), there exists \(\theta _1=\theta _1(\gamma ,q,b)\in (0,1)\) such that \(\mathop {\lim }\limits _{h\rightarrow \infty } \mu _h=0\), that is, \( |A^+_{k+bH,\rho /2}|=0. \) \(\square \)

Proof of Lemma 3.4

The following inequality comes from [12, Lemma 2.3]

$$\begin{aligned} (l-k)|A^+_{l,\rho }|^{1-\frac{1}{Q}}\le \frac{C\rho |B_\rho |^{1-1/Q}}{|B_\rho \setminus A^+_{k,\rho }|}\int _{A^+_{k,\rho } \setminus A^+_{l,\rho }} |{\nabla _{{{\mathcal {H}}}}}u|dx. \end{aligned}$$
(8.12)

Denote

$$\begin{aligned} \mu _1=\mathop {\sup }\limits _{B_{\rho }}u(x)\ge {k},\ w_1=\mu _1-k\ {{\textrm{and}}}\ D_t=A^+_{\mu _1-\frac{w_1}{2^{t}},\rho /2}\setminus {A^+_{\mu _1-\frac{w_1}{2^{t+1}},\rho /2}}, t=1,2,\dots . \end{aligned}$$

Letting \(l=\mu _1-\frac{w_1}{2^{t+1}}\), \(k=\mu _1-\frac{w_1}{2^{t}}\) and \(\rho \rightarrow \rho /2\) in (8.12), we have

$$\begin{aligned} {\frac{w_1}{2^{t+1}}}\left| {A^+_{\mu _1-\frac{w_1}{2^{t+1}},\rho /2}}\right| ^{1-1/Q} \le {\frac{C\rho |B_{\rho /2}|^{1-1/Q}}{|B_{\rho /2}\setminus {A^+_{\mu _1 -\frac{w_1}{2^{t}},\rho /2}}|}}\int _{D_t}|\nabla _{{\mathcal {H}}}{u}|dx,\ t=1,2,\dots .\nonumber \\ \end{aligned}$$
(8.13)

The assumption that \(|A^-_{k,\rho /2}|\ge \tau |B_{\rho /2}|\) implies that

$$\begin{aligned} \left| {A^+_{\mu _1-\frac{w_1}{2^{t}},\rho /2}}\right| \le \left| {A^+_{\mu _1- \frac{w_1}{2},\rho /2}}\right| =\left| {A^+_{\frac{\mu _1}{2}+\frac{k}{2},\rho /2}}\right| \le \left| {A^+_{k,\rho /2}}\right| \le (1-\tau )|B_{\rho /2}|, \end{aligned}$$

which, together with Hölder’s inequality to (8.13), yields

$$\begin{aligned} \left( {\frac{w_1}{2^{t+1}}}\right) ^2\left| {A^+_{\mu _1-\frac{w_1}{2^{t+1}},\rho /2}}\right| ^{2-2/Q} \le {\frac{C}{\tau ^2}}|D_t|\int _{D_t}|\nabla _{{\mathcal {H}}}{u}|^2dx. \end{aligned}$$
(8.14)

Letting \(k=\mu _1-\frac{w_1}{2^t}\), \(\rho '\rightarrow \rho /2\) and \(\rho \rightarrow \rho \) in (3.1), we have

$$\begin{aligned} \int _{A^+_{\mu _1-\frac{w_1}{2^{t}},\rho /2}}|\nabla _{{\mathcal {H}}}{u}|^2dx&\le {\frac{4\gamma }{(\rho )^2}} \int _{A^+_{\mu _1-\frac{w_1}{2^{t}},\rho }}\left| u-\left( \mu _1-\frac{w_1}{2^t} \right) \right| ^2dx+\chi ^2\left| {A^+_{\mu _1-\frac{w_1}{2^{t}},\rho }}\right| ^{1-2/q}\nonumber \\&\le {C}\left[ {\frac{\gamma }{\rho ^2}}\left| {A^+_{\mu _1-\frac{w_1}{2^{t}},\rho }}\right| ^{2/q}\!\! {\mathop {\sup }\limits _{B_{\rho }}\left| u{-}\left( \mu _1-\frac{w_1}{2^t}\right) \right| ^2} {+}\chi ^2\right] \left| {A^+_{\mu _1-\frac{w_1}{2^{t}},\rho }}\right| ^{1-2/q}\nonumber \\&\le {C}\left[ \gamma \rho ^{2Q/q-2}{\left( {\frac{w_1}{2^{t}}} \right) ^2}+\chi ^2\right] \left| {A^+_{\mu _1-\frac{w_1}{2^{t}},\rho }}\right| ^{1-2/q}. \end{aligned}$$
(8.15)

Below we may assume that

$$\begin{aligned} \chi \rho ^{1-Q/q}\le {w_1}/2^t=(\mu _1-k)/2^t, \end{aligned}$$
(8.16)

otherwise we have

$$\begin{aligned} 2^{-t_0}\mu _1-2^{-t_0}k<\chi \rho ^{1-Q/q}, \end{aligned}$$

that is,

$$\begin{aligned} 0<2^{-t_0}\left( k-{\mathop {\sup }\limits _{B_{\rho }}u(x)}\right) +\chi \rho ^{1-Q/q}. \end{aligned}$$

Thus (3.2) holds. Combining (8.16), (8.15) and (8.14), we have

$$\begin{aligned} \left| {A^+_{\mu _1-\frac{w_1}{2^{s-2}},\rho /2}}\right| ^{2-2/Q}\le \left| {A^+_{\mu _1-\frac{w_1}{2^{t+1}},\rho /2}}\right| ^{2-2/Q} \le {\frac{{C}(1+\gamma )}{\tau ^2}}|D_t|\rho ^{2Q/q-2}. \end{aligned}$$
(8.17)

Summing (8.17) with respect to t from 1 to \(s-3\), we have

$$\begin{aligned} (s-2)\left| {A^+_{\mu _1-\frac{w_1}{2^{s-2}},\rho /2}}\right| ^{2-2/Q} \le {\frac{{C}(1+\gamma )}{\tau ^2}}|B_{\rho /2}|^{2-2/Q}. \end{aligned}$$

Here for any ball \(B_\rho \) we use [24, Theorem V.4.1 on P69] to control its volume, that is, \(C_1 \rho ^Q \le |B_\rho | \le C_2 \rho ^Q\). Thus

$$\begin{aligned} \left| {A^+_{\mu _1-\frac{w_1}{2^{s-2}},\rho /2}}\right| \le \left( \frac{C(1 +\gamma )}{\tau ^2(s-2)}\right) ^{Q/(2Q-2)}|B_{\rho /2}|. \end{aligned}$$

Denote

$$\begin{aligned} \theta _1=\left( \frac{C(1+\gamma )}{\tau ^2(s-2)}\right) ^{Q/(2Q-2)}. \end{aligned}$$

By (8.16) and Lemma 3.3 with \(b=1/2\) and \(k=\mu _1-\frac{w_1}{2^{s-2}}\), there exists \(s=s(\gamma ,q,\tau )>0\) such that

$$\begin{aligned} \mathop {\sup }\limits _{B_{\rho /4}}u(x)\le \mu _1-2^{-s+1}w_1 =\mathop {\sup }\limits _{B_{\rho }}u(x)-2^{-s+1} \left( \mathop {\sup }\limits _{B_{\rho }}u(x)-k\right) . \end{aligned}$$

Thus (3.2) holds true. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C. \(C^{1,\alpha }\)-regularity for p-harmonic functions on SU(3) and semi-simple Lie groups. Abh. Math. Semin. Univ. Hambg. (2024). https://doi.org/10.1007/s12188-024-00274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12188-024-00274-4

Keywords

Mathematics Subject Classification

Navigation