Skip to main content
Log in

Temperature–insensitive curvature sensor based on hollow-core fiber assisted microbubble Mach–Zehnder interferometer

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A compact fiber-optical curvature sensor based on the hollow-core fiber (HCF) assisted microbubble Mach–Zehnder interferometer (HMZI) is proposed and experimentally demonstrated. Transmission spectral characteristics of the proposed curvature sensor have been investigated with a maximum intensity-interrogated sensitivity of − 1.48 dB/m−1 in a curvature range from 1.22 m−1 to 3.46 m−1. The temperature-induced instability is measured below 0.30 dB in a large temperature range of 35 °C to 60 °C, suggesting a good temperature resistance performance. The overall sensing size is controlled to be around 600 μm. Hence, the HMZI curvature sensor has several desirable merits such as wide measurement range, temperature insensitivity, and ease of integration, which make it a promising candidate in curvature-related mechanical engineering and structural health monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. R. Liu, S. Wang, H. Yang et al., Highly stretchable strain sensor with spiral fiber for curvature sensing of a soft pneumatic gripper. IEEE Sens. J. 21(21), 23880–23888 (2021)

    Article  ADS  Google Scholar 

  2. I. Floris, J.M. Adam, P.A. Calderón et al., Fiber optic shape sensors: a comprehensive review. Opt. Lasers Eng. 139, 106508 (2021)

    Article  Google Scholar 

  3. X. Cai, S. Gao, M. Wu et al., Temperature-insensitive curvature sensor with few-mode-fiber based hybrid structure. Opt. Laser Technol. 168, 109843 (2024)

    Article  Google Scholar 

  4. X. Li, J. Guo, X. Ma et al., Flexible capacitive curvature sensor with one-time calibration for amphibious gait monitoring. Soft Rob. 8(2), 164–174 (2021)

    Article  Google Scholar 

  5. H. Di, Y. Xin, S. Sun, Electric current measurement using fiber-optic curvature sensor. Opt. Lasers Eng. 77, 26–30 (2016)

    Article  Google Scholar 

  6. Z. Xiang, C. Lu, S. Wang et al., Highly sensitive RI sensor based on a D-shaped single-mode-graded-index multimode-single-mode fiber structure. Appl. Phys. B 129(1), 21 (2023)

    Article  ADS  Google Scholar 

  7. Y. Liang, H. Zhang, H. Guo et al., Simultaneous measurement of temperature and magnetic field based on ionic-liquid-infiltrated side-hole fibers. J. Lightwave Technol. 39(21), 7001–7007 (2021)

    Article  ADS  Google Scholar 

  8. Y. Zhao, M. Tang, Y. Ma et al., Fabrication and sensing characteristics of long-period fiber grating in capillary fiber. IEEE Sens. J. 23(4), 3581–3588 (2023)

    Article  ADS  Google Scholar 

  9. Y. Liu, Y. Feng, J. Wen et al., Integrated fiber-optic sensor based on inscription of FBG in seven-core fiber for curvature and temperature measurements. Opt. Fiber Technol. 75, 103197 (2023)

    Article  Google Scholar 

  10. Y. Zhang, W. Zhang, Y. Zhang et al., Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber. Meas. Sci. Technol. 28(5), 055101 (2017)

    Article  ADS  Google Scholar 

  11. C. Sun, Z. Han, S. Zhang et al., A micro MMF layer embedded in LPFG for simultaneous measurement of curvature and temperature. Opt. Fiber Technol. 48, 134–137 (2019)

    Article  ADS  Google Scholar 

  12. S. Hu, S. Li, Y. Zhao, One dimensional vector curvature sensor based on 2-core fiber offset structure. Measurement 193, 110964 (2022)

    Article  Google Scholar 

  13. Z. Tang, S. Lou, X. Wang et al., High-performance bending vector and strain sensor using a dual-tapered photonic crystal fiber Mach-Zehnder interferometer. IEEE Sens. J. 19(11), 4062–4068 (2019)

    Article  ADS  Google Scholar 

  14. Y. Zhao, L. Cai, X.G. Li, Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure. IEEE Trans. Instrum. Meas. 66(1), 141–147 (2016)

    Article  ADS  Google Scholar 

  15. C. Zhu, S. Huang, C. Tang et al., Miniature temperature-independent curvature sensor based on a phase-shifted long-period fiber grating using deep tapering. IEEE Sensors J. 23(13), 14174–14181 (2023)

    Article  ADS  Google Scholar 

  16. H. Cheng, S. Wu, Q. Wang et al., In-line hybrid fiber sensor for curvature and temperature measurement. IEEE Photonics J. 11(6), 1–11 (2019)

    Article  Google Scholar 

  17. D. Pallarés-Aldeiturriaga, L. Rodríguez-Cobo, A. Quintela et al., Curvature sensor based on in-fiber Mach-Zehnder interferometer inscribed with femtosecond laser. J. Lightwave Technol. 35(21), 4624–4628 (2017)

    Article  ADS  Google Scholar 

  18. L.A. Herrera-Piad, I. Hernández-Romano, D.A. May-Arrioja et al., Sensitivity enhancement of curvature fiber sensor based on polymer-coated capillary hollow-core fiber. Sensors 20(13), 3763 (2020)

    Article  ADS  Google Scholar 

  19. B. Qi, B. Su, F. Zhang et al., A compact fiber cascaded structure incorporating hollow core fiber with large inner diameter for simultaneous measurement of curvature and temperature. IEEE Photonics J. 14(1), 1–8 (2022)

    Article  Google Scholar 

  20. X. Zhu, Y. Pan, A. Sun et al., High sensitivity Mach-Zehnder interferometer based on peanut-shaped hollow-core fiber. Optics Communications 542, 129566 (2023)

    Article  Google Scholar 

  21. F. Zhao, J. Wang, Y. Xiao et al., Curvature monitoring of power grid wires based on anti-resonant reflecting guidance in hollow core fibers. Optik 213, 164785 (2020)

    Article  ADS  Google Scholar 

  22. X. Zhu, S. Li, D. Sun et al., High sensitivity temperature and curvature sensor based on mach-zehnder interferometer with tapered two peanut-shaped structures. IEEE Sens. J. 22(5), 4135–4143 (2022)

    Article  ADS  Google Scholar 

  23. X. Zhu, Y. Pan, A. Sun et al., High sensitivity curvature sensor based on a double-sphere tapered no-core fiber Mach-Zehnder interferometer. Opt. Laser Technol. 155, 108364 (2022)

    Article  Google Scholar 

  24. M. Shao, J. Liang, H. Gao et al., Seven-core fiber based in-fiber Mach-Zehnder interferometer for temperature-immune curvature sensing. Optics Commun. 528, 128989 (2023)

    Article  Google Scholar 

  25. T. Liu, H. Zhang, B. Liu et al., Highly compact vector bending sensor with microfiber-assisted Mach-Zehnder interferometer. IEEE Sens. J. 19(9), 3343–3347 (2019)

    Article  ADS  Google Scholar 

  26. Z. Yang, W. Yuan, C. Yu, Hollow core bragg fiber-based sensor for simultaneous measurement of curvature and temperature. Sensors 21(23), 7956 (2021)

    Article  ADS  Google Scholar 

  27. S. Liu, J. Tian, S. Wang et al., Anti-resonant reflecting guidance in silica tube for high temperature sensing. IEEE Photonics Technol. Lett. 29(23), 2135–2138 (2017)

    Article  ADS  Google Scholar 

  28. Y. Gui, Q. Shu, P. Lu et al., Optical fiber sensor for curvature and temperature measurement based on anti-resonant effect cascaded with multimode interference. Sensors 22(21), 8457 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (62205131, 62105307), Natural Science Foundation of Jiangsu Province (BK20220519). Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (22KJB140002), China Postdoctoral Science Foundation (2022M721378, 2023M741435).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YL, MC; methodology: YL, TG; writing—original draft preparation: XS; writing—review and editing: YL, ZD, XS; formal analysis and investigation: YL, MC; funding acquisition: ZD, HL; software: HL, XS; data curation: XS, ZD; all the authors reviewed the manuscript.

Corresponding author

Correspondence to Ying Liang.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Su, X., Gong, T. et al. Temperature–insensitive curvature sensor based on hollow-core fiber assisted microbubble Mach–Zehnder interferometer. Appl. Phys. B 130, 57 (2024). https://doi.org/10.1007/s00340-024-08193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08193-1

Keywords

Navigation