Skip to main content
Log in

Influence of hydrogenated petroleum resin on structure evolution and properties of polyethylene film during biaxial stretching process

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two polyethylene samples, one (PE-10) blended with 10% hydrogenated petroleum resin (HPR) and one (PE-0) blended without HPR, were used to investigate the structural evolution and deformation behavior during sequential biaxial stretching and the properties of films after stretching. During the process of stretching in the machine direction (MD), the addition of HPR affected the movement of molecular chains and the slip and rearrangement of lamellae, the orientation rate of the samples slowed down, and the fibril structure and voids reduced. During stretching along the transverse direction (TD), the molecular chains and lamellar structure orientation of PE-10 samples were faster, due to the less fibrillar structures and voids. In addition, the mechanical properties and puncture resistance of PE-0 and PE-10 samples after biaxial stretching were excellent, and the mechanical properties of PE-10 film in TD direction were slightly better than that of PE-0 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Uehara H, Sakauchi K, Kanai T, Yamada T (2004) Stretchability and properties of various LLDPE for biaxially oriented Film. Int Polym Process J Polym Process Soc 19(2):172–179

    Article  CAS  Google Scholar 

  2. Matche RS, Sreekumar RK, Raj B (2011) Modification of linear low-density polyethylene film using oxygen scavengers for its application in storage of bun and bread. J Appl Polym Sci 122(1):55–63

    Article  CAS  Google Scholar 

  3. Kumar Sen S, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3(1):462–473

    Article  CAS  Google Scholar 

  4. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529

    Article  CAS  Google Scholar 

  5. Moreno DDP, Saron C (2018) Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste. Waste Manage Res 36(8):729–736

    Article  CAS  Google Scholar 

  6. Zhang J-P, Zhang F-S (2018) Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis. Chem Eng J 331:169–176

    Article  CAS  Google Scholar 

  7. Jiang M, Wei X, Chen X, Wang L, Liang J (2020) C9 petroleum resin hydrogenation over a PEG1000-modified nickel catalyst supported on a recyclable fluid catalytic cracking catalyst residue. ACS Omega 5(32):20291–20298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zohuriaan-Mehr MJ, Omidian H (2000) Petroleum resins: an overview. J Macromolecular Sci Part C 40(1):23–49

    Article  Google Scholar 

  9. Bratychak M, Grynyshyn O, Astakhova O, Shyshchak O, Waclawek W (2008) Obtaining of petroleum resins using pyrolysis by-products - 13. Petroleum resins with hydroxyl groups modified with styrene. Ecol Chem Eng S 15(3):387–395

    CAS  Google Scholar 

  10. Bondaletov V, Bondaletova L, Hamlenko A, Bondaletov O, Starovoit M (2014) Modification of aliphatic petroleum resin by peracetic acid. Procedia Chem 10:275–279

    Article  CAS  Google Scholar 

  11. Bratychak M, Grynyshyn O, Shyshchak O, Romashko I, Wacławek W (2007) Obtaining of petroleum resins using pyrolysis by-products 12. Petroleum resins with hydroxyl groups. Ecol Chem Eng 14(2):225–234

    CAS  Google Scholar 

  12. Petrukhina NN, Zakharyan EM, Korchagina SA, Nagieva MV, Maksimov AL (2018) Hydrogenation of Petroleum Resins in the Presence of supported sulfide catalysts. Pet Chem 58(1):48–55

    Article  Google Scholar 

  13. Ryu D, Kim J, Jeong W (2001) The phase behavior and viscoelastic properties of block copolymers with hydrogenated aromatic hydrocarbon resins. In: APS March meeting abstracts. pp R40–R108

    Google Scholar 

  14. Cao D, Cao Y, Wu C (2009) Morphology and dynamic mechanical properties of high density polyethylene/petroleum resin/polyethylene–octylene elastomer blends. Polym Bull 63(1):57–67

    Article  CAS  Google Scholar 

  15. Silvestre C, Cimmino S, Lin JS (2004) Structure, morphology, and crystallization process of isotactic polypropylene/hydrogenated hydrocarbon resin blends. J Polym Sci Part B Polym Phys 42(18):3368–3379

    Article  CAS  Google Scholar 

  16. Kong W-S, Ju T-J, Park J-H, Lee J-W, Yoon HG (2015) Modification of biaxially oriented polypropylene films using dicyclopentadiene based hydrogenated hydrocarbon resin. J Polym Eng J 35(9):859–866

    Article  CAS  Google Scholar 

  17. Krupa I, Luyt AS (2001) Physical properties of blends of LLDPE and an oxidized paraffin wax. Polymer 42(17):7285–7289

    Article  CAS  Google Scholar 

  18. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130(1):25–38

    Article  CAS  Google Scholar 

  19. Wu C, Cao D, Cao Y, Gao Y, Guo W (2008) Studies on the structure, morphology and thermal properties of HDPE/petroleum resin blends. E-Polym 8(1):1416–1427

    Google Scholar 

  20. Silvestre C, Cimmino S, Pirozzi B (2003) Morphology of a melt crystallized iPP/HDPE/hydrogenated hydrocarbon resin blend. Polymer 44(15):4273–4281

    Article  CAS  Google Scholar 

  21. Ou X, Cakmak M (2010) Comparative study on development of structural hierarchy in constrained annealed simultaneous and sequential biaxially stretched polylactic acid films. Polymer 51(3):783–792

    Article  CAS  Google Scholar 

  22. Marco Y, Chevalier L, Chaouche M (2002) WAXD study of induced crystallization and orientation in poly(ethylene terephthalate) during biaxial elongation. Polymer 43(24):6569–6574

    Article  CAS  Google Scholar 

  23. Lüpke T, Dunger S, Sänze J, Radusch HJ (2004) Sequential biaxial drawing polypropyl films. Polymer 45(20):6861–6872

    Article  Google Scholar 

  24. Chang H, Schultz JM, Gohil RM (1993) Morphology of biaxially stretched poly(ethylene terephthalate) films. J Macromol Sci Part B Phys 32(1):99–123

    Article  Google Scholar 

  25. Ou X, Cakmak M (2008) Influence of biaxial stretching mode on the crystalline texture in polylactic acid films. Polymer 49(24):5344–5352

    Article  CAS  Google Scholar 

  26. Masuda Ji, Ohkura M (2007) Preparation and characterization of biaxially oriented polypropylene film with high molecular orientation in the machine direction by sequential biaxial stretching. J Appl Polym Sci 106(6):4031–4037

    Article  CAS  Google Scholar 

  27. Hassan MK, Cakmak M (2014) Mechanisms of structural organizational processes as revealed by real time mechano optical behavior of PET film during sequential biaxial stretching. Polymer 55(20):5245–5254

    Article  CAS  Google Scholar 

  28. Chen Q, Chen D, Kang J, Cao Y, Chen J (2019) Structure evolution of polyethylene in sequential biaxial stretching along the first tensile direction. Ind Eng Chem Res 58(27):12419–12430

    Article  CAS  Google Scholar 

  29. Chen X, Lv F, Lin Y, Wang Z, Meng L, Zhang Q, Zhang W, Li L (2018) Structure evolution of polyethylene-plasticizer film at industrially relevant conditions studied by in-situ X-ray scattering: the role of crystal stress. Eur Polym J 101:358–367

    Article  CAS  Google Scholar 

  30. Xiong B, Lame O, Chenal J-M, Rochas C, Seguela R, Vigier G (2015) Amorphous phase modulus and micro–macro scale relationship in polyethylene via in situ SAXS and WAXS. Macromolecules 48(7):2149–2160

    Article  CAS  Google Scholar 

  31. Kajiwara K, Hiragi Y (1996) Chap. 6 structure analysis by small-angle X-ray scattering. In: Saisho H, Gohshi Y (eds) Analytical spectroscopy library. Elsevier, pp 353–404

    Google Scholar 

  32. Warren BE, Muldawer L (1970) X-ray diffraction. Phys Today 23(9):53–56

    Article  Google Scholar 

  33. Krishnaswamy RK (2000) A method to characterize the biaxial orientation of the crystalline phase in polyethylene blown films. J Polym Sci Part B Polym Phys 38(1):182–193

    Article  CAS  Google Scholar 

  34. Yu T, Wilkes GLJP (1996) Orientation determination and morphological study of high density polyethylene (HDPE) extruded tubular films: effect of processing variables and molecular weight distribution. Polymer 37:4675–4687

    Article  CAS  Google Scholar 

  35. Read BE, Stein RS (1968) Polarized infrared studies of amorphous orientation in polyethylene and some ethylene copolymers. Macromolecules 1(2):116–126

    Article  CAS  Google Scholar 

  36. Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J 44(5):1346–1357

    Article  CAS  Google Scholar 

  37. Elias MB, Machado R, Canevarolo SV (2000) Thermal and dynamic-mechanical characterization of uni- and baxially oriented polypropylene films. J Therm Anal Calorim 59(1):143–155

    Article  CAS  Google Scholar 

  38. Perret R, Ruland W (1969) Single and multiple X-ray small-angle scattering of carbon fibres. J Appl Cryst 2(5):209–218

    Article  CAS  Google Scholar 

  39. Xu RJ, Chen XD, Cai Q, Chen CB, Lin YF, Lei CH, Li LB (2015) In situ study of the annealing process of a polyethylene cast film with a row-nucleated crystalline structure by SAXS. Rsc Adv 5(35):27722–27734

    Article  CAS  Google Scholar 

  40. Peterlin A (1987) Drawing and extrusion of semi-crystalline polymers. Colloid Polym Sci 265(5):357–382

    Article  CAS  Google Scholar 

  41. Kanai T, Uehara H, Sakauchi K, Yamada T (2006) Stretchability and properties of biaxially oriented polypropylene film. Int Polym Proc 21(5):449–456

    Article  CAS  Google Scholar 

  42. Lin YJ, Dias P, Chen HY, Chum S, Hiltner A, Baer E (2008) Oxygen permeability biaxially oriented polypropyl films. Polym Eng Sci 48(4):642–648

    Article  CAS  Google Scholar 

  43. Ratta V, Wilkes GL, Su TK (2001) Structure–property-processing investigations of the tenter-frame process for making biaxially oriented HDPE Film. I. Base sheet and draw along the MD. Polymer 42(21):9059–9071

    Article  CAS  Google Scholar 

  44. Lin YJ, Dias P, Chen HY, Hiltner A, Baer E (2008) Relationship between biaxial orientation and oxygen permeability of polypropylene film. Polymer 49(10):2578–2586

    Article  CAS  Google Scholar 

  45. Kang J, Yang F, Chen J, Cao Y, Xiang M (2017) Influences of molecular weight on the non-isothermal crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. Polym Bull 74(5):1461–1482

    Article  CAS  Google Scholar 

  46. Zou P, Tang S, Fu Z, Xiong H (2009) Isothermal and non-isothermal crystallization kinetics of modified rape straw flour/high-density polyethylene composites. Int J Therm Sci 48(4):837–846

    Article  CAS  Google Scholar 

  47. Workman J Jr (2000) The handbook of organic compounds, three-volume set: NIR, IR, R, and UV-Vis spectra featuring polymers and surfactants. Elsevier Science & Technology, San Diego, San Diego

    Google Scholar 

  48. Wignall GD, Londono JD, Lin JS, Alamo RG, Galante MJ, Mandelkern L (1995) Morphology of blends of linear and long-chain-branched polyethylenes in the solid state: a study by SANS, SAXS, and DSC. Macromolecules 28(9):3156–3167

    Article  CAS  Google Scholar 

  49. Shen J, Champagne MF, Gendron R, Guo S (2012) The development of conductive carbon nanotube network in polypropylene-based composites during simultaneous biaxial stretching. Eur Polym J 48(5):930–939

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Major Projects of the National Natural Science Foundation of China (NFSC 51890873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Hu, H., Zhang, Y. et al. Influence of hydrogenated petroleum resin on structure evolution and properties of polyethylene film during biaxial stretching process. J Polym Res 31, 103 (2024). https://doi.org/10.1007/s10965-024-03950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03950-4

Keywords

Navigation