Skip to main content
Log in

Spectral Emissivity of Technical Titanium near the Melting Point

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An experimental study of the normal spectral emission ability of technical titanium grade VT1-00 in the melting region was carried out. The scheme of the upgraded direct vision radiometer with replaceable narrow-band dispersion filters of the spectral range 0.69–10.9 μm is given. The estimation of the possibility of calculating the emission capacity of titanium according to electromagnetic theory is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. Donchev, H.-E. Zschau. Mater. Corrosion, 55, 556 (2004). https://doi.org/10.1002/maco.200490059

    Article  CAS  Google Scholar 

  2. R. Bedford, G. Bonnier, H. Maas, F. Pavese. Metrologia, 33, 133 (1996). https://doi.org/10.1088/0026-1394/33/2/3

    Article  ADS  Google Scholar 

  3. D. V. Kosenkov, V. V. Sagadeev, V. A. Alyaev. Thermophys. Aeromechan., 28 (6), 951 (2021).

    Article  Google Scholar 

  4. D. V. Kosenkov, V. V. Sagadeev, V. A. Alyaev. Tech. Phys., 66 (7), 1063 (2021).

    Article  Google Scholar 

  5. G. Teodorescu, P. Jones, R. Overfelt, B. Guo. In High Temperature Emissivity of High Purity Titanium and Zirconium. In: Proceedings of the Sixteenth Symposium on Thermophysical Properties, 2006.

  6. E. A. Belskaya, N. Ya. Isaeva. TVT, 24 (5), 884 (1986).

    CAS  Google Scholar 

  7. Y. S. Touloukian, D. P. DeWitt. Thermal Radiative Poperties: Metallic Elements and Alloys. Vol. 7, Thermophysical Properties of Matter, ed. by Y. S. Touloukian, C. Y. Ho (IFI/Plenum, NY., 1970).

  8. G. Pottlacher, K. Boboridis, C. Cagran, T. Hüpf A. Seifter, B. Wilthan. AIP Conf. Proceed., 1552, 704 (2013). https://doi.org/10.1063/1.4819628

    Article  ADS  CAS  Google Scholar 

  9. A. Cezairliyan, J. L. McClure, A. P. Miiller. Int. J. Thermophys., 15, 993 (1994). https://doi.org/10.1007/BF01447109

    Article  ADS  CAS  Google Scholar 

  10. S. Kumar, S. V. Krishnamurthy, K. Balasubramaniam. (2019).

  11. A. Cezairliyan, A. P. Miiller. J. Res. Natl. Bur. Stand., 82, 119 (1977).

    Article  CAS  Google Scholar 

  12. T. Ishikawa, C. Koyama, Y. Nakata, Y. Watanabe, P.‑F. Paradis. J. Chem. Thermodyn., 131, 557 (2019).

    Article  CAS  Google Scholar 

  13. M. Watanabe, M. Adachi, H. Fukuyama. J. Molec. Liquids, 324 (2021). https://doi.org/10.1016/j.molliq.2020.115138

  14. Thermal Radiation Heat Transfer, ed. by R. Siegel, J. R. How-ell (Hemisphere publ. corp., Washington, 2000).

  15. K. Boboridiss. Intern. J. Thermophys., 23, 277 (2002). https://doi.org/10.1023/A:1013977732267

    Article  Google Scholar 

  16. B. Wilthan, C. Cagran, G. Pottlacher. Intern. J. Thermophys., 26, 1017 (2005). https://doi.org/10.1007/s10765-005-6682-z

    Article  ADS  CAS  Google Scholar 

  17. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata. Intern. J. Thermophys., 24, 223 (2003). https://doi.org/10.1023/A:1022374501754

    Article  CAS  Google Scholar 

  18. D. Ya. Svet. Opticheskie metody izmereniya istinnykh temperatur (Nauka, M., 1982).

  19. P. Herve, A. Sadou. Infrared Phys. Technol., 51, 249 (2008). https://doi.org/10.1016/j.infrared.2007.07.002

    Article  ADS  CAS  Google Scholar 

  20. L. N. Latyev, V. Ya. Chekhovskoi, E. N. Shestakov. Phys. Stat. Sol., 38 (2), K149 (1970).

    Article  ADS  CAS  Google Scholar 

  21. H. Watanabe, M. Susa, K. Nagata. Metallurgical and Materials Transactions A, 28, 2507 (1997). https://doi.org/10.1007/s11661-997-0008-7

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out in accordance with the coordination plan of research work approved by the Federal State Budgetary Educational Institution of Higher Education Kazan National Research Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kosenkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosenkov, D.V., Sagadeev, V.V. Spectral Emissivity of Technical Titanium near the Melting Point. Tech. Phys. 68 (Suppl 2), S381–S384 (2023). https://doi.org/10.1134/S1063784223900309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900309

Keywords:

Navigation