Skip to main content
Log in

Antimicrobial Resistance Surveillance in Human Pathogens in Ahmedabad: A One-Year Prospective Study

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance (AMR) is an escalating global concern, particularly in developing countries like India. A 1-year prospective study was conducted on AMR in human pathogens from Ahmedabad, India. The study aimed to generate an evidence-based database on the AMR profile of pathogens in this region. The study analysed 2204 organisms isolated from various clinical specimens. WHONET software, a specialized tool for AMR data management and interpretation, was used for data management and analysis. The most frequently isolated pathogens were Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus. These pathogens demonstrated varying resistance rates to different antibiotics. E. coli shows a high prevalence of MDR (57%), with 22% indicating possible XDR and 13% showing possible PDR. K. pneumoniae showed even higher rates of MDR (80%), with 57% indicating possible XDR and 54% possible PDR. S. aureus showed MDR in 51% of the isolates, with 11% showing possible XDR and 1% showing possible PDR. The study also identified some priority pathogens according to the World Health Organization (WHO) criteria based on their resistance to specific antibiotics. The study highlighted the significant prevalence of AMR, particularly MDR, among human pathogens in Ahmedabad, emphasizing the need for effective strategies to combat AMR in clinical settings and public health policies. The study has significant implications for understanding the epidemiology and transmission of AMR in this region, as well as for informing the development of guidelines and interventions for rational antibiotic use and infection control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

as:

Abscess

bi:

Bile

bl:

Blood

bo:

Bone

ba:

Broncho-alveolar lavage

ca:

Catheter

sf:

Cerebrospinal fluid

ea:

Ear

ec:

Endocardium

ey:

Eyes

fl:

Fluid

hd:

Head

kf:

Knee fluid

ps:

Pus

sm:

Semen

sk:

Skin

sp:

Sputum

st:

Stool

sb:

Swab

th:

Throat

ti:

Tissue

tr:

Trachea

ur:

Urine

va:

Vagina

wd:

Wound

aba:

Acinetobacter baumannii

bsl:

Bacillus subtilis

pce:

Burkholderia cepacia

ci-:

Citrobacter Sp.

ecl:

Enterobacter cloacae

efa:

Enterococcus faecalis

eco:

Escherichia coli

kpn:

Klebsiella pneumoniae

bca:

Moraxella (Branh.) catarrhalis

pvu:

Proteus vulgaris

pae:

Pseudomonas aeruginosa

sat:

Salmonella typhi

sma:

Serratia marcescens

spa:

Sphingomonas paucimobilis

sau:

Staphylococcus aureus

sep:

Staphylococcus epidermidis

spn:

Streptococcus pneumoniae

spy:

Streptococcus pyogenes

AMC_ND20:

Amoxicillin/clavulanic acid

SAM_ND10:

Ampicillin/sulbactam

TZP_ND100:

Piperacillin/tazobactam

CXM_ND30:

Cefuroxime

CAZ_ND30:

Ceftazidime

CRO_ND30:

Ceftriaxone

CTX_ND30:

Cefotaxime

CFM_ND5:

Cefixime

CPD_ND10:

Cefpodoxime

DOR_ND10:

Doripenem

ETP_ND10:

Ertapenem

IPM_ND10:

Imipenem

MEM_ND10:

Meropenem

AMK_ND30:

Amikacin

GEN_ND10:

Gentamicin

NET_ND30:

Netilmicin

CIP_ND5:

Ciprofloxacin

LVX_ND5:

Levofloxacin

MFX_ND5:

Moxifloxacin

NOR_ND10:

Norfloxacin

SXT_ND1.2:

Trimethoprim/sulfamethoxazole

CLI_ND2:

Clindamycin

AZM_ND15:

Azithromycin

ERY_ND15:

Erythromycin

NIT_ND300:

Nitrofurantoin

LNZ_ND30:

Linezolid

VAN_ND30:

Vancomycin

TEC_ND30:

Teicoplanin

CHL_ND30:

Chloramphenicol

References

  1. Murray CJ, Ikuta KS, Sharara F et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  2. Raghunath D (2008) Emerging antibiotic resistance in bacteria with special reference to India. J Biosci 33:593–603. https://doi.org/10.1007/s12038-008-0077-9

    Article  PubMed  CAS  Google Scholar 

  3. Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med. https://doi.org/10.1371/journal.pmed.1001974

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sahoo KC, Tamhankar AJ, Sahoo S et al (2012) Geographical variation in antibiotic-resistant Escherichia coli isolates from stool, cow-dung and drinking water. Int J Environ Res Public Health 9:746–759. https://doi.org/10.3390/ijerph9030746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kulkarni SV, Narayan A, Indumathi VA et al (2011) Salmonella paratyphi A in India—changing trends in presentation and antibiotic susceptibility. Asian J Med Sci 2:14–17. https://doi.org/10.3126/ajms.v2i1.3546

    Article  Google Scholar 

  6. Ganguly NK, Arora NK, Chandy SJ et al (2011) Rationalizing antibiotic use to limit antibiotic resistance in india. Indian J Med Res 134:281–294

    PubMed  Google Scholar 

  7. Veeraraghavan B, Jesudason MR, Prakasah JAJ et al (2018) Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014–2016: study for monitoring antimicrobial resistance trend report. Indian J Med Microbiol 36:32–36. https://doi.org/10.4103/ijmm.IJMM_17_415

    Article  PubMed  Google Scholar 

  8. Said KB, Alsolami A, Khalifa AM et al (2021) A multi-point surveillance for antimicrobial resistance profiles among clinical isolates of gram-negative bacteria recovered from major ha’il hospitals, saudi arabia. Microorganisms. https://doi.org/10.3390/microorganisms9102024

    Article  PubMed  PubMed Central  Google Scholar 

  9. WHO (2015) Global antimicrobial resistance surveillance system

  10. Infante B, Grape M, Larsson M et al (2005) Acquired sulphonamide resistance genes in faecal Escherichia coli from healthy children in Bolivia and Peru. Int J Antimicrob Agents 25:308–312. https://doi.org/10.1016/j.ijantimicag.2004.12.004

    Article  PubMed  CAS  Google Scholar 

  11. Tule A, Hassani U (2017) Colonization with antibiotic-resistant E. coli in commensal fecal flora of newborns. Int J Curr Microbiol Appl Sci 6:1623–1629. https://doi.org/10.20546/ijcmas.2017.605.177

    Article  CAS  Google Scholar 

  12. Purohit MR, Chandran S, Shah H et al (2017) Antibiotic resistance in an indian rural community: a ‘one-health’ observational study on commensal coliform from humans, animals, and water. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14040386

    Article  PubMed  PubMed Central  Google Scholar 

  13. Song KH, Jeon JH, Park WB et al (2009) Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: a retrospective matched case-control study. BMC Infect Dis. https://doi.org/10.1186/1471-2334-9-41

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cummins J (1999) Antimicrobial resistance. N Z Med J

  15. Dubey D, Rath S, Sahu MC et al (2013) Surveillance of infection status of drug resistant Staphylococcus aureus in an Indian teaching hospital. Asian Pac J Trop Dis 3:133–142. https://doi.org/10.1016/S2222-1808(13)60057-2

    Article  PubMed Central  Google Scholar 

  16. Wayne PA (2007) Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. In: 17th Informational supplement Wayne, PA CLSI M100-S17

  17. Watson R (2010) Microbiology Lab: MOLB 2210. University of Wyoming. http://www.uwyo.edu/molb2210_lab/info/biochemical_tests.htm#methyl_red

  18. CLSI, Lewis II JS, Melvin Weinstein FP, et al (1986) M100-Ed32 February 2022 replaces M100-Ed31 performance standards for antimicrobial susceptibility testing suggested citation

  19. World Health Organization (2022) WHONET microbiology laboratory database software. In: World Health Organisation collaborating centre for surveillance of antimicrobial resistance

  20. WHO (2021) Global antimicrobial resistance and use surveillance system (GLASS). In: World Health Organisation. http://www.who.int/glass/resources/publications/early-implementation-report-2020/en/

  21. Camp B, Mandivarapu JK, Ramamurthy N et al (2018) A new cross-platform architecture for epi-info software suite. BMC Bioinform. https://doi.org/10.1186/s12859-018-2334-8

    Article  Google Scholar 

  22. Berends MS, Luz CF, Friedrich AW et al (2022) AMR: an R package for working with antimicrobial resistance data. J Stat Softw. https://doi.org/10.18637/jss.v104.i03

    Article  Google Scholar 

  23. Patel DA, Patel KB, Bhatt SK, Shah HS (2011) Surveillance of hospital acquired infection in surgical wards in tertiary care centre Ahmedabad, Gujarat. Natl J Community Med 2:340–345

    ADS  Google Scholar 

  24. Iyer V, Ravalia A, Bhavsar K et al (2019) Antimicrobial resistance surveillance in typhoidal Salmonella in Ahmedabad in an era of global antimicrobial resistance surveillance systems. J Glob Infect Dis 11:153–159. https://doi.org/10.4103/jgid.jgid-149-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chauhan H, Khokhar N, Patel P et al (2023) Bacteriological profile and antibiotic susceptibility of blood culture from neonates in GMERS Medical College, Gandhinagar. Natl J Physiol Pharm Pharmacol. https://doi.org/10.5455/njppp.2023.13.02086202316022023

    Article  Google Scholar 

  26. Sekar R, Mythreyee M, Srivani S, Amudhan M (2016) Prevalence of antimicrobial resistance in Escherichia coli and Klebsiella spp. in rural South India. J Glob Antimicrob Resist 5:80–85. https://doi.org/10.1016/j.jgar.2016.01.003

    Article  PubMed  Google Scholar 

  27. Moolchandani K, Sastry AS, Deepashree R et al (2017) Antimicrobial resistance surveillance among intensive care units of a tertiary care hospital in South India. J Clin Diagn Res 11:DC01–DC07. https://doi.org/10.7860/JCDR/2017/23717.9247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Saravanan R, Raveendaran V (2013) Antimicrobial resistance pattern in a tertiary care hospital: an observational study. J Basic Clin Pharm 4:56. https://doi.org/10.4103/0976-0105.118797

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh AK, Das S, Singh S et al (2018) Prevalence of antibiotic resistance in commensal Escherichia coli among the children in rural hill communities of northeast India. PLoS One. https://doi.org/10.1371/journal.pone.0199179

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gandra S, Tseng KK, Arora A et al (2019) The mortality burden of multidrug-resistant pathogens in india: a retrospective, observational study. Clin Infect Dis 69:563–570. https://doi.org/10.1093/cid/ciy955

    Article  PubMed  Google Scholar 

  31. Sasikaladevi R, Kiruthika Eswari V, Nambi IM (2020) Antibiotic resistance and sanitation in India: current situation and future perspectives. Handb Environ Chem 91:217–244. https://doi.org/10.1007/698_2020_608

    Article  Google Scholar 

  32. Rizwan M, Akhtar M, Najmi AK, Singh K (2018) Escherichia coli and Klebsiella pneumoniae sensitivity/resistance pattern towards antimicrobial agents in primary and simple urinary tract infection patients visiting university hospital of Jamia Hamdard New Delhi. Drug Res (Stuttg) 68:415–428. https://doi.org/10.1055/a-0576-0079

    Article  PubMed  CAS  Google Scholar 

  33. Chilam J, Argimón S, Limas MT et al (2021) Genomic surveillance of Pseudomonas aeruginosa in the Philippines, 2013–2014. West Pac Surveill Response J 12:4–18. https://doi.org/10.5365/wpsar.2020.11.1.006

    Article  Google Scholar 

  34. ECDC (2014) Antimicrobial resistance in the EU in 2012. Vet Rec

  35. Ballén V, Gabasa Y, Ratia C et al (2021) Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front Cell Infect Microbiol 11:824. https://doi.org/10.3389/fcimb.2021.738223

    Article  CAS  Google Scholar 

  36. Cdc.gov (2015) CDC—Klebsiella pneumoniae in healthcare settings—HAI. http://www.cdc.gov/HAI/organisms/klebsiella/klebsiella.html

  37. Ito T, Katayama Y, Asada K et al (2001) Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323–1336. https://doi.org/10.1128/AAC.45.5.1323-1336.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Author J. Prajapati acknowledges University Grants Commission (UGC), New Delhi, India for providing fellowship for the award of ‘CSIR-NET Junior Research Fellowship (JRF)’. Authors acknowledge the Department of Biochemistry and Forensic Science and DST-FIST Sponsored Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, for providing necessary facilities to perform experiments.

Funding

This work was supported by Gujarat State Biotechnology Mission (GSBTM) under Network program on Antimicrobial Resistance, Superbugs, and One Health: Human Health Care Node [GSBTM/JD(R&D)/616/21-22/1236].

Author information

Authors and Affiliations

Authors

Contributions

MD, and JP wrote the manuscript, MD, JP, BK, and DG performed experiments, prepared figures, and tables, JP, RMR and DG conceptualized the idea, JP, DG and MS revised and critically proofread the manuscript. All authors have seen and approved the manuscript.

Corresponding authors

Correspondence to Rakesh M. Rawal or Dweipayan Goswami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Gujarat University’s Institutional Ethics Committee (GU-IEC(NIV)/02/PROJ/032).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabhi, M., Prajapati, J., Panchal, J. et al. Antimicrobial Resistance Surveillance in Human Pathogens in Ahmedabad: A One-Year Prospective Study. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01233-6

Keywords

Navigation