Skip to main content
Log in

Peptide Engineering Approach to Introduce an Improved Calcitonin Mutant

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Calcitonin is a 32-amino acid peptide, which causes a decrease in blood calcium levels and bone resorption in the human body. It is produced in different species. Salmon calcitonin is used as a medicine for diseases such as osteoporosis, Paget’s disease, and hypercalcemia. However, the salmon calcitonin peptide used as a medicine, could induce immune responses in humans. Decreasing the antigenicity of salmon calcitonin could improve this molecule for pharmaceutical usage. In this study, improving physicochemical properties and reducing allergenicity and especially the antigenicity of salmon calcitonin were followed. The calcitonin sequences of different species were evaluated, and those with better properties were considered as a guide for peptide engineering. In silico methods were utilized to characterize the properties of the reviewed calcitonin sequences, and the best sequences (the calcitonin of sheep, dog, rat, and human) were used as a template to decrease the antigenicity of salmon calcitonin. The epitopic parts, i.e., amino acids 16 to 29, were identified by different servers. Hot spot residues including Y22, N26, T27, and S29 were characterized based on the main criteria of being a B-cell epitope including convexity index, hydrophilicity, and surface accessibility. These residues were replaced with lower antigenic counterparts. Results showed the final selected mutant (T27V/S29V) had a lower antigenicity and higher solubility and stability than salmon calcitonin. Thus, our suggested mutant could be a potential alternative candidate to salmon calcitonin. However, future in vitro and in vivo evaluations are needed to confirm its suitability for clinical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Naot D., Musson D.S., Cornish J. 2019. The activity of peptides of the calcitonin family in bone. Physiol. Rev. 99 (1), 781‒805.

    Article  CAS  PubMed  Google Scholar 

  2. Sekiguchi T. 2018. The calcitonin/calcitonin gene-related peptide family in invertebrate deuterostomes. Front. Endocrinol. 9, 695.

    Article  Google Scholar 

  3. Hoogwerf B.J., Doshi K.B., Diab D. 2008. Pramlintide, the synthetic analogue of amylin, physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc. Health Risk. Manage. 4 (2), 355‒362.

    Article  CAS  Google Scholar 

  4. Nikitenko L., Fox S., Kehoe S., Rees M., Bicknell R. 2006. Adrenomedullin and tumour angiogenesis. Br. J. Cancer. 94 (1), 1‒7.

    Article  CAS  PubMed  Google Scholar 

  5. Caron K.M., Smithies O. 2001. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc. Natl. Acad. Sci. U. S. A. 98 (2), 615‒619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shindo T., Kurihara Y., Nishimatsu H., Moriyama N., Kakoki M., Wang Y., Imai Y., Ebihara A., Kuwaki T., Ju K.-H. 2001. Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation. 104 (16), 1964‒1971.

    Article  CAS  PubMed  Google Scholar 

  7. Cornish J., Callon K., Bava U., Kamona S., Cooper G., Reid I. 2001. Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone. 29 (2), 162‒168.

    Article  CAS  PubMed  Google Scholar 

  8. Dacquin R., Davey R.A., Laplace C., Levasseur R., Morris H.A., Goldring S.R., Gebre-Medhin S., Galson D.L., Zajac J.D., Karsenty G. 2004. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J. Cell Biol. 164 (4), 509‒514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naot D., Cornish J. 2008. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone. 43 (5), 813‒818.

    Article  CAS  PubMed  Google Scholar 

  10. Kapurniotu A. 2004. Contribution of conformationally constrained calcitonin (Ct) analogs to the understanding of the structural and conformational requirements of calcitonin bioactivity and to the design of potent agonists. Curr. Med. Chem. 11 (21), 2845‒2865.

    Article  CAS  PubMed  Google Scholar 

  11. Johansson E., Hansen J.L., Hansen A.M.K., Shaw A.C., Becker P., Schäffer L., Reedtz-Runge S. 2016. Type II turn of receptor-bound salmon calcitonin revealed by X-ray crystallography. J. Biol. Chem. 291 (26), 13689‒13698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pearse A.G.E. 1966. The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc. R Soc. London, Ser. B. 164 (996), 478‒487.

    Article  CAS  Google Scholar 

  13. Friedman J., Raisz L.G. 1965. Thyrocalcitonin: Inhibitor of bone resorption in tissue culture. Science. 150 (3702), 1465‒1467.

    Article  CAS  PubMed  Google Scholar 

  14. Granholm S., Henning P., Lerner U.H. 2011. Comparisons between the effects of calcitonin receptor-stimulating peptide and intermedin and other peptides in the calcitonin family on bone resorption and osteoclastogenesis. J. Cell. Biochem. 112 (11), 3300‒3312.

    Article  CAS  PubMed  Google Scholar 

  15. Felsenfeld A.J., Levine B.S. 2015. Calcitonin, the forgotten hormone: Does it deserve to be forgotten? Clin. Kidney J. 8 (2), 180‒187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stroop S.D., Nakamuta H., Kuestner R.E., Moore E.E., Epand R.M. 1996. Determinants for calcitonin analog interaction with the calcitonin receptor N-terminus and transmembrane-loop regions. Endocrinology. 137 (11), 4752‒4756.

    Article  CAS  PubMed  Google Scholar 

  17. Wimalawansa S.J. 1997. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: A peptide superfamily. Crit. Rev. Neurobiol. 11 (2-3), 167‒239.

    Article  CAS  PubMed  Google Scholar 

  18. Stevenson C.L. 2009. Advances in peptide pharmaceuticals. Curr. Pharm. Biotechnol. 10 (1), 122‒137.

    Article  CAS  PubMed  Google Scholar 

  19. Guggi D., Bernkop-Schnürch A. 2003. In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. Int. J. Pharm. 252 (1-2), 187‒196.

    Article  CAS  PubMed  Google Scholar 

  20. Lang S.R., Staudenmann W., James P., Manz H.-J., Kessler R., Galli B., Moser H.-P., Rummelt A., Merkle H.P. 1996. Proteolysis of human calcitonin in excised bovine nasal mucosa: Elucidation of the metabolic pathway by liquid secondary lonization mass spectrometry (LSIMS) and matrix assisted laser desorption lonization mass spectrometry (MALDI). Pharm. Res. 13 (11), 1679‒1685.

    Article  CAS  PubMed  Google Scholar 

  21. Kozono T., Hirata M., Endo K., Satoh K., Takanashi H., Miyauchi T., Fukushima N., Kumagai E., Abe S., Matsuda E. 1992. A chimeric analog of human and salmon calcitonin eliminates antigenicity and reduces gastrointestinal disturbances. Endocrinology. 131 (6), 2885‒2890.

    Article  CAS  PubMed  Google Scholar 

  22. Zarei M., Nezafat N., Rahbar M.R., Negahdaripour M., Sabetian S., Morowvat M.H., Ghasemi Y. 2019. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. J. Biomol. Struct. Dyn. 37 (2), 523‒536.

    Article  CAS  PubMed  Google Scholar 

  23. Wimalawansa S.J. 1993. Long-and short-term side effects and safety of calcitonin in man: A prospective study. Calcif. Tissue Int. 52 (2), 90‒93.

    Article  CAS  PubMed  Google Scholar 

  24. Negahdaripour M., Eslami M., Nezafat N., Hajighahramani N., Ghoshoon M.B., Shoolian E., Dehshahri A., Erfani N., Morowvat M.H., Ghasemi Y. 2017. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect. Genet. Evol. 54, 402‒416.

    Article  CAS  PubMed  Google Scholar 

  25. Zarei M., Rahbar M.R., Negahdaripour M., Morowvat M.H., Nezafat N., Ghasemi Y. 2020. Cell penetrating peptide: Sequence-based computational prediction for intercellular delivery of arginine deiminase. Curr. Proteomics. 17 (2), 117‒131.

    Article  CAS  Google Scholar 

  26. Rahmatabadi S.S., Nezafat N., Negahdaripour M., Hajighahramani N., Morowvat M.H., Ghasemi Y. 2016. Studying the features of 57 confirmed CRISPR loci in 29 strains of Escherichia coli. J. Basic Microbiol. 56 (6), 645‒653.

    Article  CAS  PubMed  Google Scholar 

  27. Karimi Z., Nezafat N., Negahdaripour M., Berenjian A., Hemmati S., Ghasemi Y. 2015. The effect of rare codons following the ATG start codon on expression of human granulocyte-colony stimulating factor in Escherichia coli. Protein Expr. Purif. 114, 108‒114.

    Article  CAS  PubMed  Google Scholar 

  28. Rahbar M.R., Zarei M., Jahangiri A., Khalili S., Nezafat N., Negahdaripour M., Fattahian Y., Ghasemi Y. 2020. Pierce into the native structure of Ata, a trimeric autotransporter of Acinetobacter baumannii ATCC 17978. Int. J. Peptide Res. Ther. 26, 1269‒1282.

    Article  CAS  Google Scholar 

  29. UniProt Consortium 2019. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47 (D1), D506‒D515.

    Article  Google Scholar 

  30. Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook. Walker J.M., Ed. Humana Press, pp. 571‒607.

    Google Scholar 

  31. Doytchinova I.A., Flower D.R. 2007. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf. 8, 4.

    Article  Google Scholar 

  32. Kolaskar A.S., Tongaonkar P.C. 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276 (1–2), 172‒174.

    Article  CAS  PubMed  Google Scholar 

  33. Kringelum J.V., Lundegaard C., Lund O., Nielsen M. 2012. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput. Biol. 8 (12), e1002829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ponomarenko J., Bui H.-H., Li W., Fusseder N., Bourne P.E., Sette A., Peters B. 2008. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinf. 9 (1), 514.

    Article  Google Scholar 

  35. Jespersen M.C., Peters B., Nielsen M., Marcatili P. 2017. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45 (W1), W24‒W29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ligeti B., Vera R., Juhász J., Pongor S. 2017. CX, DPX, and PCW: Web servers for the visualization of interior and protruding regions of protein structures in 3D and 1D. In Prediction of Protein Secondary Structure. Springer, pp. 301‒309.

    Google Scholar 

  37. Pandurangan A.P., Ochoa-Montaño B., Ascher D.B., Blundell T.L. 2017. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 45 (W1), W229‒W235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T.G., Bertoni M., Bordoli L. 2014. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42 (W1), W252‒W258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bordoli L., Schwede T. 2012. Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. In Homology Modeling. Methods and Protocols. Orry A.J.W., Abagyan R., Eds. Humana Press, pp. 107‒136.

    Google Scholar 

  40. Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 22 (2), 195‒201.

    Article  CAS  PubMed  Google Scholar 

  41. Guex N., Peitsch M.C. 1997. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis. 18 (15), 2714‒2723.

    Article  CAS  PubMed  Google Scholar 

  42. Peitsch M.C. 1996. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24 (1), 274‒279.

    Article  CAS  PubMed  Google Scholar 

  43. Schwede T., Kopp J., Guex N., Peitsch M.C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31 (13), 3381‒3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shin W.-H., Lee G.R., Heo L., Lee H., Seok C. 2014. Prediction of protein structure and interaction by GALAXY protein modeling programs. BioDesign. 2, 1‒11.

    Google Scholar 

  45. Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B. 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27 (1), 293‒315.

    Article  CAS  PubMed  Google Scholar 

  46. Jonsson J., Norberg T., Carlsson L., Gustafsson C., Wold S. 1993. Quantitative sequence-activity models (QSAM)—tools for sequence design. Nucleic Acids Res. 21 (3), 733‒739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hebditch M., Carballo-Amador M.A., Charonis S., Curtis R., Warwicker J. 2017. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics. 33 (19), 3098‒3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pace C.N., Grimsley G.R., Scholtz J.M. 2009. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 284 (20), 13285‒13289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikai A. 1980. Thermostability and aliphatic index of globular proteins. J. Biochemistry. 88 (6), 1895‒1898.

    CAS  Google Scholar 

  50. Lebreton A., Moreau V., Lapalud P., Cayzac C., André S., Nguyen C., Schved J.F., Lavigne G., Granier C. 2011. Discontinuous epitopes on the C2 domain of coagulation Factor VIII mapped by computer-designed synthetic peptides. Br. J. Haematol. 155 (4), 487‒497.

    Article  CAS  PubMed  Google Scholar 

  51. Sun J., Xu T., Wang S., Li G., Wu D., Cao Z. 2011. Does difference exist between epitope and non-epitope residues? Analysis of the physicochemical and structural properties on conformational epitopes from B-cell protein antigens. Immunome Res. 7 (3), 1‒11.

    Google Scholar 

  52. Ashkenazy H., Erez E., Martz E., Pupko T., Ben-Tal N. 2010. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38 (suppl. 2), W529‒W533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Breimer L.H., MacIntyre I., Zaidi M. 1988. Peptides from the calcitonin genes: molecular genetics, structure and function. Biochem. J. 255 (2), 377‒390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carugo O. 2003. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. J. Appl. Crystallogr. 36 (1), 125‒128.

    Article  CAS  Google Scholar 

  55. Schecroun N., Pidoux E., Horne W.C., Hernandez-Lagunas L., Baron R., Cressent M. 1999. Biological properties of salmon calcitonin IV. J. Bone Miner. Res. 14 (8), 1425‒1431.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Research Council of Shiraz University of Medical Sciences, Shiraz University of Medical Sciences in Iran for supporting this research.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

M. Zarei and B. Abedini contributed equally to this manuscript.

Corresponding author

Correspondence to M. Negahdaripour.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

MATERIALS AVAILABILITY

All data generated during this study are included in this published article and its supplementary information file.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11008_2024_8574_MOESM1_ESM.pdf

Three supplementary tables (Tables S1‒S3) are available for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Abedini, B., Dehshahri, A. et al. Peptide Engineering Approach to Introduce an Improved Calcitonin Mutant. Mol Biol (2024). https://doi.org/10.1134/S0026893324700110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0026893324700110

Keywords:

Navigation