Skip to main content
Log in

Promoter Mutation of the bZIP Transcription Factor BdABF Accelerates Flowering in Brachypodium distachyon

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Flowering time plays an important role in crop regional adaptation, yield and reproductive success. ABRE BINDING FACTORs (ABFs) are bZIP transcription factors that participate in various plant biological processes. However, only a few ABFs have been reported to function in controlling flowering time. Here, we identified and characterized the function of the Brachypodium bZIP transcription factor BdABF in controlling flowering time. The results showed that Bdabf mutation in the promoter region promoted early flowering time in Bdabf T-DNA mutants compared with wild-type (WT) plants. Transcriptomic analysis showed that, compared with WT plants, 447 differentially expressed genes (DEGs) (266 upregulated and 181 downregulated) were identified in circadian rhythm, ABA signaling, IAA signaling, and flavonoid biosynthesis pathways in Bdabf mutants. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that the expression profiles of these genes in various pathways were consistent with the RNA-seq-based transcriptome dataset. The TF binding element analysis of these genes involved in different pathways in the promoter region showed that bHLH, bZIP, NF-Y, TIFY, and WRKY transcription factors were enriched. Taken together, our results showed that BdABF was involved in controlling flowering time by activating various metabolic pathways and provided new insights into ABFs controlling flowering time in Brachypodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Liu H., Li T., Wang Y., Zheng J., Li H., Hao C., Zhang X. 2019. TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.). J. Integr. Plant Biol. 61, 359‒376.

    Article  CAS  PubMed  Google Scholar 

  2. Suarez-Lopez P., Wheatley K., Robson F., Onouchi H., Valverde F., Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 410, 1116‒1120.

    Article  CAS  PubMed  Google Scholar 

  3. Takada S., Goto K. 2003. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOW-ERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell. 15, 2856‒2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beales J., Turner A., Griffiths S., Snape J.W., Laurie D.A. 2007. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721‒733.

    Article  CAS  PubMed  Google Scholar 

  5. Holm M., Ma L.G., Qu L.J., Deng X.W. 2002. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16, 1247‒1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glover J.M., Harrison S.C. 1995. Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA. Nature. 373, 257–261.

    Article  CAS  PubMed  Google Scholar 

  7. Jakoby M., Weisshaar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F. 2002. bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106‒111.

    Article  CAS  PubMed  Google Scholar 

  8. Nijhawan A., Jain M., Tyagi A.K., Khurana J.P. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146, 333–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei K., Chen J., Wang Y., Chen Y., Chen S., Lin Y., Pan S., Zhong X., Xie D. 2012. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res. 19, 463‒476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Leene J., Blomme J., Kulkarni S.R., Cannoot B., De Winne N., Eeckhout D., Persiau G., Van De Slijke E., Vercruysse L., Vanden Bossche R., Heyndrickx K.S., Vanneste S., Goossens A., Gevaert K., Vandepoele K., Gonzalez N., Inzé D., De Jaeger G. 2016. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. J. Exp. Bot. 67, 5825‒5840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang S., Xu K., Chen S., Li T., Xia H., Chen L., Liu H., Luo L. 2019. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC Plant Biol. 19, 260.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan T., He M., Liu H., Tian X., Wang Z., Yu X., Miao X., Li X. 2022. Transcription factor bZIP65 delays flowering via suppressing Ehd1 expression in rice. Mol. Breed. 42 (10), 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., Ichinoki H., Notaguchi M., Goto K., Araki T. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 309, 1052‒1056.

    Article  CAS  PubMed  Google Scholar 

  14. Li C., Zhang L., Wang X., Yu C., Zhao T., Liu B., Li H., Liu J., Zhang C. 2023. The transcription factor HBF1 directly activates expression of multiple flowering time repressors to delay rice flowering. aBIOTECH. 4 (3), 213‒223. https://doi.org/10.1007/s42994-023-00107-7

  15. Nan H., Cao D., Zhang D., Li Y., Lu S., Tang L., Yuan X., Liu B., Kong F. 2014. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One. 9 (5), e97669.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672–685.

    Article  CAS  PubMed  Google Scholar 

  17. Collin A., Daszkowska-Golec A., Szarejko I. 2021. Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE EL-EMENT BINDING FACTORs (ABFs) in ABA signaling in different developmental stages in plants. Cells. 10 (8), 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jing T., Zhang N., Gao T. Wu Y., Zhao M., Jin J., Du W., Schwab W., Song C. 2020. UGT85A53 promotes flowering via mediating abscisic acid glucosylation and FLC transcription in Camellia sinensis. J. Exp. Bot. 71, 7018‒7029.

    Article  CAS  PubMed  Google Scholar 

  19. Hwang K., Susila H., Nasim Z., Jung J.Y., Ahn J.H. 2019. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol. Plant. 12, 489‒505.

    Article  CAS  PubMed  Google Scholar 

  20. Tang L., Wang H., Li G., Zhao J., Li Z., Liu X., Shu Y., Liu W., Wang S., Huang J., Ying J., Tong X., Yuan W., Wei X., Tang S., Wang Y., Bu Q., Zhang J. 2023. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J. Adv. Res. S2090-1232(23)00175-3.

  21. Liu X., Li Z., Hou Y., Wang Y., Wang H., Tong X., Ao H., Zhang J. 2019. Protein interactomic analysis of SAPKs and ABA-inducible bZIPs revealed key roles of SAPK10 in rice flowering. Int. J. Mol. Sci. 20, 1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vain P., Worland B., Thole V., McKenzie N., Alves S., Opanowicz M., Fish L., Bevan M., Snape J. 2008. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6 (3), 236‒245.

    Article  CAS  PubMed  Google Scholar 

  23. Chen D.H., Ronald P.C. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17, 53–57.

    Article  CAS  Google Scholar 

  24. Han H., Shen G., An T., Song B., Zhao S., Qi X. 2018. Highly efficient generation of T-DNA insertion lines and isolation of flanking sequence tags (FSTs) of Brachypodium distachyon. Plant Biotechnol. Rep. 12, 237–248.

    Article  Google Scholar 

  25. Su P., Sui C., Wang S., Liu X., Zhang G., Sun H., Wan K., Yan J., Guo S. 2023. Genome-wide evolutionary analysis of AUX/IAA gene family in wheat identifies a novel gene TaIAA15-1A regulating flowering time by interacting with ARF. Int. J. Biol. Macromol. 227, 285‒296.

    Article  CAS  PubMed  Google Scholar 

  26. Gangappa S.N., Botto J.F. 2016. The multifaceted roles of HY5 in plant growth and development. Mol Plant. 9 (10), 1353‒1365.

    Article  CAS  PubMed  Google Scholar 

  27. Kaur A., Nijhawan A., Yadav M., Khurana J. 2021. Os-bZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice. J. Exp. Bot. 72, 7826‒7845.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y., Li L., Ye T., Lu Y., Chen X., Wu Y. 2013. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J. Exp. Bot. 64, 675‒684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurup S., Jones H.D., Holdsworth M.J. 2000. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 21, 143‒155.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X., Garreton V., Chua N.H. 2005. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19, 1532‒1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shu K., Chen Q., Wu Y., Liu R., Zhang H., Wang S., Tang S., Yang W., Xie Q. 2016. ABSCISIC ACID-IN-SENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J. Exp. Bot. 67, 195‒205.

    Article  CAS  PubMed  Google Scholar 

  32. Foyer C.H., Kerchev P.I., Hancock R.D. 2012. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways. Plant Signal. Behav. 7, 276‒281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang C., Zhou Q., Liu W., Wu X., Li Z., Xu Y., Li Y., Imaizumi T., Hou X., Liu T. 2022. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. Plant J. 111 (1), 134‒148.

    Article  CAS  PubMed  Google Scholar 

  34. Bao S., Hua C., Shen L., Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J. Integr. Plant Biol. 62 (1), 118‒131.

    Article  CAS  PubMed  Google Scholar 

  35. Jing S., Sun X., Yu L., Wang E., Cheng Z., Liu H., Jiang P., Qin J., Begum S., Song B. 2022. Transcription factor StABI5-like 1 binding to the FLOWERING L-OCUS T homologs promotes early maturity in potato. Plant Physiol. 189, 1677‒1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by Natural Science Foundation of Shandong Province (ZR2022QC129, ZR2020MC034); Doctoral research start-up funds, Liaocheng University (318052018); State Key Laboratory of Crop Biology, Shandong Agricultural University (2021KF03); Undergraduate innovation and entrepreneurship training program, Liaocheng University (CXCY2023260, 202310447038, CXCY2023287, S202310447248).

Author information

Authors and Affiliations

Authors

Contributions

BJH and ZJL contributed equally to this work. PSS conceived and designed the experiments. BJH and ZJL performed most experiments. BJH and ZJL transcriptomics analysis; WMB, FTS and YFN performed expression analysis; TYS, WJY and PYW performed the screening of homozygous transgenic lines and RNA extraction; PSS wrote and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to N. Li.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B.J., Liu, Z.J., Bai, W.M. et al. Promoter Mutation of the bZIP Transcription Factor BdABF Accelerates Flowering in Brachypodium distachyon. Mol Biol (2024). https://doi.org/10.1134/S0026893324700055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0026893324700055

Keywords:

Navigation