Skip to main content
Log in

Verification of CRISPR/Cas9 Activity In Vitro via SSA-Based Dual-Luciferase Reporter System

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The CRISPR/Cas9 technique has emerged as a powerful and promising tool for precise genomic integration, which applied to various cell types and organisms, but its efficiency largely depends on single-guide RNA (sgRNA). There are multiple strategies available to evaluate the cleavage activity of sgRNAs, and one such approach is T7 endonuclease I (T7EI) assay, which is laborious and time consuming, especially when one must address multiple samples in parallel. In this study, a simple and rapid method to detect the cleavage activity of sgRNA was developed. Based on the single-strand annealing (SSA) repair mechanism, a surrogate reporter system using firefly luciferase was constructed to evaluate the targeting efficiency of sgRNAs. Using this system, the luciferase activities of eight sgRNAs were observed, and one of them had highest cutting efficiency (p < 0.01). Thereby, T7EI assay was compared with the method established in this study to determine the accuracy and sensitivity, and the results of these two methods were consistent suggesting that the SSA reporter system was compatible with T7EI assay. Compared with T7EI assay requiring multiple steps, such as PCR amplification, the SSA reporter system with one-step transfection can be completed on a large scale of sgRNAs within approximate two days. These findings suggested that SSA-based reporter system can accurately and rapidly evaluate the cleavage activities of multiple sgRNAs, thereby providing a robust and reliable process for CRISPR/Cas9 to select sgRNAs efficiently in genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Durai S., Mani M., Kandavelou K., Wu J., Porteus M.H., Chandrasegaran S. 2005. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978‒5990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186, 757‒761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cong L., Ran F.A., Cox D., Lin S.L., Barretto R., Habib N., Hsu P.D., Wu X.B., Jiang W.Y., Marraffini L.A., Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819‒823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carroll D. 2014. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409‒439.

    Article  CAS  PubMed  Google Scholar 

  5. Cathomen T., Joung J.K. 2008. Zinc-finger nucleases: The next generation emerges. Am. Soc. Gene Ther. 16, 1200‒1207.

    Article  CAS  Google Scholar 

  6. Pennisi E. 2012. The tale of the TALEs. Science. 338, 1408‒1411.

    Article  CAS  PubMed  Google Scholar 

  7. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816‒821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. 2013. RNA-guided human genome engineering via Cas9. Science. 339, 823‒826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Tsai S.Q., Sander J.D., Peterson R.T., Yeh J.R., Joung J.K. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227‒229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gratz S.J., Cummings A.M., Nguyen J.N., Hamm D.C., Donohue L.K., Harrison M.M., Wildonger J., O’Connor-Giles K.M. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 194, 1029‒1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho S.W., Kim S., Kim J.M., Kim J.S. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230‒232.

    Article  CAS  PubMed  Google Scholar 

  12. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153, 910‒918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184‒191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chuai G., Ma H., Yan J., Chen M., Hong N., Xue D., Zhou C., Zhu C., Chen K., Duan B., Gu F., Qu S., Huang D., Wei J., Liu Q. 2018. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rahman M.K., Rahman M.S. 2017. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems. PLoS One. 12, e0181943.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smurnyy Y., Cai M., Wu H., McWhinnie E., Tallarico J.A., Yang Y., Feng Y. 2014. DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat. Chem. Biol. 10, 623‒625.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X., Wang Y.S., Guo W.J., Chang B.H., Liu J., Guo Z.K., Quan F.S., Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat. Commun. 4, 2565.

    Article  PubMed  Google Scholar 

  18. Gross T., Jeney C., Halm D., Finkenzeller G., Stark G.B., Zengerle R., Koltay P., Zimmermann S. 2021. Characterization of CRISPR/Cas9 RANKL knockout mesenchymal stem cell clones based on single-cell printing technology and emulsion coupling assay as a low-cellularity workflow for single-cell cloning. PLoS One. 16, e0238330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sentmanat M.F., Peters S.T., Florian C.P., Connelly J.P., Pruett-Miller S.M. 2018. A survey of validation strategies for CRISPR-Cas9 editing. Sci. Rep. 8, 888.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee J.M., Kim U., Yang H., Ryu B., Kim J., Sakuma T., Yamamoto T., Park J.H. 2021. TALEN-mediated generation of Nkx3.1 knockout rat model. Prostate. 81, 182‒193.

    Article  CAS  PubMed  Google Scholar 

  21. Jia C., Huai C., Ding J., Hu L., Su B., Chen H., Lu D. 2018. New applications of CRISPR/Cas9 system on mutant DNA detection. Gene. 641, 55‒62.

    Article  CAS  PubMed  Google Scholar 

  22. Kim H., Um E., Cho S.R., Jung C., Kim H., Kim J.S. 2011. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods. 8, 941‒943.

    Article  CAS  PubMed  Google Scholar 

  23. Mashal R.D., Koontz J., Sklar J. 1995. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 9, 177‒183.

    Article  CAS  PubMed  Google Scholar 

  24. He Z., Shi X., Liu M., Sun G., Proudfoot C., Whitelaw C.B., Lillico S.G., Chen Y. 2016. Comparison of surrogate reporter systems for enrichment of cells with mutations induced by genome editors. J. Biotechnol. 221, 49‒54.

    Article  CAS  PubMed  Google Scholar 

  25. Vouillot L., Thelie A., Pollet N. 2015. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda). 5, 407‒415.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Labuhn M., Adams FF., Ng M., Knoess S., Schambach A., Charpentier E.M., Schwarzer A., Mateo J.L., Klusmann J.H., Heckl D. 2018. Refined sgRNA efficacy prediction improves large- and small-scale CRIS-PR-Cas9 applications. Nucleic Acids Res. 46, 1375‒1385.

    Article  CAS  PubMed  Google Scholar 

  27. Ren C., Xu K., Liu Z., Shen J., Han F., Chen Z., Zhang Z. 2015. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells. Cell. Mol. Life Sci. 72, 2763‒2772.

    Article  CAS  PubMed  Google Scholar 

  28. Yan N., Sun Y., Fang Y., Deng J., Mu L., Xu K., Mymryk J.S., Zhang Z. 2020. A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology-directed repair in mammalian cells. Mol. Ther. Nucleic Acids. 19, 775‒789.

    Article  CAS  PubMed  Google Scholar 

  29. Kim Y.H., Ramakrishna S., Kim H., Kim J.S. 2014. Enrichment of cells with TALEN-induced mutations using surrogate reporters. Methods. 69, 108‒117.

    Article  CAS  PubMed  Google Scholar 

  30. Mali P., Esvelt K.M., Church G.M. 2013. Cas9 as a versatile tool for engineering biology. Nat. Methods. 10, 957‒963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279‒284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perez E.E., Wang J.B., Miller J.C., Jouvenot Y., Kim K.A., Liu O., Wang N., Lee G., Bartsevich V.V., Lee Y.L., Guschin D.Y., Rupniewski I., Waite A.J., Carpenito C., Carroll R.G., Orange J.S., Urnov F.D., Rebar E.J., Ando D., Gregory P.D., Riley J.L., Holmes M.C., June C.H. 2008. Establishment of HIV-1 resistance in CD4(+) T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808‒816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim H.J., Lee H.J., Kim H., Cho S.W., Kim J.S. 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279‒1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee H.J., Kim E., Kim J.S. 2010. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81‒89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramakrishna S., Cho S.W., Kim S., Song M., Gopalappa R., Kim J.S., Kim H. 2014. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat. Commun. 5, 3378.

    Article  PubMed  Google Scholar 

  36. Rulten S.L., Grundy G.J. 2017. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process. Bioessays. 39 (3). https://doi.org/10.1002/bies.201600209

  37. Wilson K.A., Chateau M.L., Porteus M.H. 2013. Design and development of artificial zinc finger transcription factors and zinc finger nucleases to the hTERT locus. Mol. Ther. Nucleic Acids. 2, e87.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Preston C.R., Flores C.C., Engels W.R. 2006. Differential usage of alternative pathways of double-strand break repair in Drosophila. Genetics. 172, 1055‒1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mon H., Kusakabe T., Bando H., Kojima K., Kawaguchi Y., Koga K. 2003. Analysis of extrachromosomal homologous recombination in cultured silkworm cells. Biochem. Biophys. Res. Commun. 312, 684‒690.

    Article  CAS  PubMed  Google Scholar 

  40. Al-Zain A.M., Symington L.S. 2021. The dark side of homology-directed repair. DNA Repair (Amst.). 106, 103181.

    Article  CAS  PubMed  Google Scholar 

  41. Kuhar R., Gwiazda K.S., Humbert O., Mandt T., Pangallo J., Brault M., Khan I., Maizels N., Rawlings D.J., Scharenberg A.M., Certo M.T. 2014. Novel fluorescent genome editing reporters for monitoring DNA repair pathway utilization at endonuclease-induced breaks. Nucleic Acids Res. 42, e4.

    Article  CAS  PubMed  Google Scholar 

  42. Liskay R.M., Letsou A., Stachelek J.L. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 115, 161‒167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong C., Gou Y., Lian J. 2022. SgRNA engineering for improved genome editing and expanded functional assays. Curr. Opin. Biotechnol. 75, 102697.

    Article  CAS  PubMed  Google Scholar 

  44. Hiranniramol K., Chen Y., Liu W., Wang X. 2020. Generalizable sgRNA design for improved CR-ISPR/Cas9 editing efficiency. Bioinformatics. 36, 2684‒2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Szczepek M., Brondani V., Buchel J., Serrano L., Segal D.J., Cathomen T. 2007. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786‒793.

    Article  CAS  PubMed  Google Scholar 

  46. Zou J., Maeder M.L., Mali P., Pruett-Miller S.M., Thibodeau-Beganny S., Chou B.K., Chen G., Ye Z., Park I.H., Daley G.Q., Porteus M.H., Joung J.K., Cheng L. 2009. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 5, 97‒110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao A., Cheng Z., Kong L., Zhu Z., Lin S., Gao G., Zhang B. 2014. CasOT: A genome-wide Cas9/gRNA off-target searching tool. Bioinformatics. 30, 1180‒1182.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang H.M., Zhou Y.X., Wang Y.A., Zhao Y.G., Qiu Y.T., Zhang X.Y., Yue D., Zhou Z., Wei W.S. 2018. A surrogate reporter system for multiplexable evaluation of CRISPR/Cas9 in targeted mutagenesis. Sci. Rep. 8 (1), 1042.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Dr. Jian Kang, Dr. Deji Luan and Dr. Kang Zhang for the suggestions in performing experiments.

Funding

This work was supported by National Major Project for Production of Transgenic Breeding (no. 2016ZX08007-002) and National Natural Science Foundation of China (no. 31873033).

Author information

Authors and Affiliations

Authors

Contributions

PD and XCD contributed equally to this work. PD and XCD have made substantial contributions to conception, acquisition of data, drafting the manuscript; XYW have made substantial contributions to analysis and interpretation of data; YPG and FSQ have given final approval of the version to be published. All authors of this article agree to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Y. P. Gao or F. S. Quan.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

MATERIALS AVAILABILITY

The data used to support the findings of this study are included within the article. The data and materials in the current study are available from the corresponding author on reasonable request.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Dong, X.C., Wang, X.Y. et al. Verification of CRISPR/Cas9 Activity In Vitro via SSA-Based Dual-Luciferase Reporter System. Mol Biol (2024). https://doi.org/10.1134/S0026893324700092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0026893324700092

Keywords:

Navigation