Skip to main content
Log in

What Actin and Myosin Do in the Nucleus: New Functions of the Well-Known Proteins

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The functions of actin and its motor proteins myosins in the cytoplasm have been the subject of research for more than 100 years, but the existence and function of these proteins in the nucleus has been a matter of debate until recently. Recent data has clarified the role of actin and myosin molecules in controlling the dynamics of processes in the cell nucleus, chromatin organization and genome integrity. New microscopy techniques and the use of modified actin-binding probes have made it possible for the first time to directly visualize the polymerization of actin filaments in the nucleus of living cells. Here we discuss the processes that control the dynamic balance of actin and myosins between the nucleus and the cytoplasm, as well as the role of these proteins in the regulation of transcription, DNA repair, chromatin reorganization, tumor transformation and cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Vreugde S., Ferrai C., Miluzio A., Hauben E., Marchisio P.C., Crippa M.P., Bussi M., Biffo S. 2006. Nuclear myosin VI enhances RNA polymerase ii-dependent transcription. Mol. Cell. 23 (5), 749–755.

    Article  CAS  PubMed  Google Scholar 

  2. Pollard T.D. 2016. Actin and actin-binding proteins. Cold Spring. Harb. Perspect. Biol. 8 (8), a018226.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dopie J., Skarp K.P., Kaisa Rajakylä E., Tanhuanpää K., Vartiainen M.K. 2012. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl. Acad. Sci. U. S. A. 109 (9), E544–E552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hyrskyluoto A., Vartiainen M.K. 2020. Regulation of nuclear actin dynamics in development and disease. Curr. Opin. Cell. Biol. 64, 18–24.

    Article  CAS  PubMed  Google Scholar 

  5. Plessner M., Grosse R. 2019. Dynamizing nuclear actin filaments. Curr. Opin. Cell. Biol. 56, 1–6.

    Article  CAS  PubMed  Google Scholar 

  6. Olave I.A., Reck-Peterson S.L., Crabtree G.R. 2002. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71 (1), 755–781.

    Article  CAS  PubMed  Google Scholar 

  7. Cook A.W., Gough R.E., Toseland C.P. 2020. Nuclear myosins—roles for molecular transporters and anchors. J. Cell. Sci. 133 (11), jcs242420.

    Article  CAS  PubMed  Google Scholar 

  8. de Lanerolle P. 2012. Nuclear actin and myosins at a glance. J. Cell. Sci. 125 (21), 4945–4949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fomproix N., Percipalle P. 2004. An actin-myosin complex on actively transcribing genes. Exp. Cell. Res. 294 (1), 140–148.

    Article  CAS  PubMed  Google Scholar 

  10. Baarlink C., Plessner M., Sherrard A., Morita K., Misu S., Virant D., Kleinschnitz E.-M., Harniman R., Alibhai D., Baumeister S., Miyamoto K., Endesfelder U., Kaidi A., Grosse R. 2017. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat. Cell. Biol. 19 (12), 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  11. Belin B.J., Cimini B.A., Blackburn E.H., Mullins R.D. 2013. Visualization of actin filaments and monomers in somatic cell nuclei. Mol. Biol. Cell. 24 (7), 982–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belin B.J., Lee T., Mullins R.D. 2015. DNA damage induces nuclear actin filament assembly by formin-2 and spire-1/2 that promotes efficient DNA repair. Elife. 4, e11935

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barth R., Bystricky K., Shaban H.A. 2020. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. 6 (27), eaaz2196.

  14. Maly I.V., Hofmann W.A. 2020. Myosins in the nucleus. In: Myosins. Ed. Coluccio L. Springer, Cham., pp. 199‒231.

  15. Venit T., El Said N.H., Mahmood S.R., Percipalle P. 2021. A dynamic actin-dependent nucleoskeleton and cell identity. J. Biochem. 169 (3), 243–257.

    Article  CAS  PubMed  Google Scholar 

  16. Wang A., Kolhe J.A., Gioacchini N., Baade I., Brieher W.M., Peterson C.L., Freeman B.C. 2020. Mechanism of long-range chromosome motion triggered by gene activation. Dev. Cell. 52 (3), 309‒320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chatterjee N., Walker G.C. 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58 (5), 235–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmood S.R., El Said N.H., Percipalle P. 2022. The role of nuclear actin in genome organization and gene expression regulation during differentiation. Results Probl. Cell Differ. 70, 607‒624.

    Article  CAS  PubMed  Google Scholar 

  19. Wong X., Loo T.H., Stewart C.L. 2021. LINC complex regulation of genome organization and function. Curr. Opin. Genet. Dev. 67, 130–141.

    Article  CAS  PubMed  Google Scholar 

  20. Janin A., Bauer D., Ratti F., Millat G., Méjat A. 2017. Nuclear envelopathies: A complex LINC between nuclear envelope and pathology. Orphanet J. Rare Dis. 12 (1), 147.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fiore A.P.Z.P., Spencer V.A., Mori H., Carvalho H.F., Bissell M. J., Bruni-Cardoso A. 2017. Laminin-111 and the level of nuclear actin regulate epithelial quiescence via exportin-6. Cell. Rep. 19 (10), 2102–2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stuven T. 2003. Exportin 6: A novel nuclear export receptor that is specific for profilin-actin complexes. EMBO J. 22 (21), 5928–5940.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bamburg J.R., Wiggan O.P. 2002. ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12 (12), 598–605.

    Article  CAS  PubMed  Google Scholar 

  24. Pendleton A., Pope B., Weeds A., Koffer A. 2003. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278 (16), 14394–14400.

    Article  CAS  PubMed  Google Scholar 

  25. Dopie J., Rajakylä E.K., Joensuu M.S., Huet G., Ferrantelli E., Xie T., Jäälinoja H., Jokitalo E., Vartiainen M.K. 2015. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators. J. Cell Sci. 128 (13), 2388–2400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borkúti P., Kristó I., Szabó A., Bajusz C., Kovács Z., Réthi-Nagy Z., Lipinszki Z., Lukácsovich T., Bogdan S., Vilmos P. 2022. Parallel import mechanisms ensure the robust nuclear localization of actin in Drosophila. Front. Mol. Biosci. 9, 963635.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Misu S., Takebayashi M., Miyamoto K. 2017. Nuclear actin in development and transcriptional reprogramming. Front. Genet. 8, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kalo A., Kanter I., Shraga A., Sheinberger J., Tzemach H., Kinor N., Singer R.H., Lionnet T., Shav-Tal Y. 2015. Cellular levels of signaling factors are sensed by β-actin alleles to modulate transcriptional pulse intensity. Cell Rep. 11 (3), 419–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chatzifrangkeskou M., Pefani D., Eyres M., Vendrell I., Fischer R., Pankova D., O’Neill E. 2019. RASSF 1A is required for the maintenance of nuclear actin levels. EMBO J. 38 (16), e101168.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Görlich D., Seewald M.J., Ribbeck K. 2003. Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J. 22 (5), 1088–1100.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vartiainen M.K. 2008. Nuclear actin dynamics—from form to function. FEBS Lett. 582 (14), 2033–2040.

    Article  CAS  PubMed  Google Scholar 

  32. Dzijak R., Yildirim S., Kahle M., Novák P., Hnilicova J., Venit T., Hozák P. 2012. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. PLoS One. 7 (1), e30529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maly I.V., Hofmann W.A. 2016. Calcium-regulated import of myosin IC into the nucleus. Cytoskeleton. 73 (7), 341–350.

    Article  CAS  PubMed  Google Scholar 

  34. Gillespie P.G., Cyr J.L. 2002. Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides. BMC Biochem. 3 (1), 31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lu Q., Li J., Ye F., Zhang M. 2015. Structure of myosin-1c tail bound to calmodulin provides insights into calcium-mediated conformational coupling. Nat. Struct. Mol. Biol. 22 (1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  36. Pruschy M., Ju Y., Spitz L., Carafoli E., Goldfarb D.S. 1994. Facilitated nuclear transport of calmodulin in tissue culture cells. J. Cell Biol. 127 (6), 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  37. Hokanson D.E., Laakso J.M., Lin T., Sept D., Ostap E.M. 2006. Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol. Biol. Cell. 17 (11), 4856–4865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ungricht R., Kutay U. 2015. Establishment of NE asymmetry-targeting of membrane proteins to the inner nuclear membrane. Curr. Opin. Cell Biol. 34, 135–141.

    Article  CAS  PubMed  Google Scholar 

  39. Nevzorov I., Sidorenko E., Wang W., Zhao H., Vartiainen M.K. 2018. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization. EMBO Rep. 19 (2), 290–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majewski L., Nowak J., Sobczak M., Karatsai O., Havrylov S., Lenartowski R., Suszek M., Lenartowska M., Redowicz M.J. 2018. Myosin VI in the nucleus of neurosecretory PC12 cells: Stimulation-dependent nuclear translocation and interaction with nuclear proteins. Nucleus. 9 (1), 125–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hari-Gupta Y., Fili N., Dos Santos Á., Cook A.W., Gough R.E., Reed H.C.W., Wang L., Aaron J., Venit T., Wait E., Grosse-Berkenbusch A., Christof J., Gebhardt M., Percipalle P., Chew T.L., Martin-Fernandez M., Toseland C.P. 2020. Nuclear myosin VI regulates the spatial organization of mammalian transcription initiation. Nat. Commun. 13 (1), 1346.

    Article  Google Scholar 

  42. Kneussel M., Sánchez-Rodríguez N., Mischak M., Heisler F.F. 2021. Dynein and muskelin control myosin VI delivery towards the neuronal nucleus. iScience. 24 (5), 102416.

  43. Cameron R.S., Liu C., Mixon A.S., Pihkala J.P.S., Rahn R.J., Cameron P.L. 2007. Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil. Cytoskeleton. 64 (1), 19–48.

    Article  CAS  PubMed  Google Scholar 

  44. Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., Hozak P., de Lanerolle P. 2004. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell. Biol. 6 (11), 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  45. Hu P., Wu S., Hernandez N. 2004. A role for β-actin in RNA polymerase III transcription. Gen. Dev. 18 (24), 3010–3015.

    Article  CAS  Google Scholar 

  46. Kukalev A., Nord Y., Palmberg C., Bergman T., Percipalle P. 2005. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 12 (3), 238–244.

    Article  CAS  PubMed  Google Scholar 

  47. Kotani T., Yasuda K., Ota R., Yamashita M. 2013. Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules. J. Cell Biol. 202 (7), 1041–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hari-Gupta Y., Fili N., dos Santos Á., Cook A.W., Gough R.E., Reed H.C.W., Wang L., Aaron J., Venit T., Wait E., Grosse-Berkenbusch A., Gebhardt J.C.M., Percipalle P., Chew T.L., Martin-Fernandez M., Toseland C.P. 2022. Myosin VI regulates the spatial organisation of mammalian transcription initiation. Nat. Commun. 13 (1), 1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dundr M., Ospina J.K., Sung, M.H., John S., Upender M., Ried T., Hager G.L., Matera A.G. 2007. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179 (6), 1095–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mehta I.S., Amira M., Harvey A.J., Bridger J.M. 2010. Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol. 11 (1), R5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khanna N., Hu Y., Belmont A.S. 2014. HSP70 Transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24 (10), 1138–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chuang C.H., Carpenter A.E., Fuchsova B., Johnson T., de Lanerolle P., Belmont A.S. 2006. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16 (8), 825–831.

    Article  CAS  PubMed  Google Scholar 

  53. Baarlink C., Wang H., Grosse R. 2013. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science. 340 (6134), 864–867.

    Article  CAS  PubMed  Google Scholar 

  54. Percipalle P., Fomproix N., Cavellán E., Voit R., Reimer G., Krüger T., Thyberg J., Scheer U., Grummt I., Östlund Farrants A. 2006. The chromatin remodelling complex WSTF–SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep. 7 (5), 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aymard F., Aguirrebengoa M., Guillou E., Javierre B.M., Bugler B., Arnould C., Rocher V., Iacovoni J. S., Biernacka A., Skrzypczak M., Ginalski K., Rowicka M., Fraser P., Legube G. 2017. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat. Struct. Mol. Biol. 24 (4), 353–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caridi C.P., D’Agostino C., Ryu T., Zapotoczny G., Delabaere L., Li X., Khodaverdian V.Y., Amaral N., Lin E., Rau A.R., Chiolo I. 2018. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 559 (7712), 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Parisis N., Krasinska L., Harker B., Urbach S., Rossignol M., Camasses A., Dewar J., Morin N., Fisher D. 2017. Initiation of DNA replication requires actin dynamics and formin activity. EMBO J. 36 (21), 3212–3231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sarshad A., Sadeghifar F., Louvet E., Mori R., Böhm S., Al-Muzzaini B., Vintermist A., Fomproix N., Östlund A.K., Percipalle P. 2013. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet. 9 (3), e1003397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saidova A.A., Potashnikova D. M., Tvorogova A.V., Paklina O.V., Veliev E.I., Knyshinsky G.V., Setdikova G.R., Rotin D.L., Maly I.V., Hofmann W.A., Vorobjev I.A. 2021. Myosin 1C isoform A is a novel candidate diagnostic marker for prostate cancer. PLoS One. 16 (5), e0251961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lan L., Han H., Zuo H., Chen Z., Du Y., Zhao W., Gu J., Zhang Z. 2010. Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int. J. Cancer. 126 (1), 53–64.

    Article  CAS  PubMed  Google Scholar 

  61. Arjonen A., Kaukonen R., Ivaska J. 2011. Filopodia and adhesion in cancer cell motility. Cell Adh. Migr. 5 (5), 421–430.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cao R., Chen J., Zhang X., Zhai Y., Qing X., Xing W., Zhang L., Malik Y.S., Yu H., Zhu X. 2014. Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br. J. Cancer. 111 (3), 539–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vartiainen M.K., Guettler S., Larijani B., Treisman R. 2007. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 316 (5832), 1749–1752.

    Article  CAS  PubMed  Google Scholar 

  64. Pawłowski R., Rajakylä E.K., Vartiainen M.K., Treisman R. 2010. An actin-regulated importin α/β-dependent extended bipartite NLS directs nuclear import of MRTF-A. EMBO J. 29 (20), 3448–3458.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mouilleron S., Langer C.A., Guettler S., McDonald N.Q., Treisman R. 2011. Structure of a pentavalent G-actin·MRTF-A complex reveals how G‑actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci. Signal. 4 (177), ra40.

    Article  PubMed  Google Scholar 

  66. Posern G., Treisman R. 2006. Actin’ together: Serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 16 (11), 588–596.

    Article  CAS  PubMed  Google Scholar 

  67. Esnault C., Stewart A., Gualdrini F., East P., Horswell S., Matthews N., Treisman R. 2014. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Gen Dev. 28 (9), 943–958.

    Article  CAS  Google Scholar 

  68. Nishimoto N., Watanabe M., Watanabe S., Sugimo-to N., Yugawa T., Ikura T., Koiwai O., Kiyono T., Fujita M. 2012. Heterocomplex formation by Arp4 and β‑actin involved in integrity of the Brg1 chromatin remodeling complex. J. Cell Sci. 125 (16), 3870–3882.

    CAS  PubMed  Google Scholar 

  69. Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. 1998. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 95 (5), 625–636.

    Article  CAS  PubMed  Google Scholar 

  70. Kapoor P., Chen M., Winkler D.D., Luger K., Shen X. 2013. Evidence for monomeric actin function in INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 20 (4), 426–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kapoor P., Shen X. 2014. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 24 (4), 238–246.

    Article  CAS  PubMed  Google Scholar 

  72. Qi T., Tang W., Wang L., Zhai L., Guo L., Zeng X. 2011. G-actin participates in RNA polymerase ii-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286 (17), 15171–15181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Galarneau L., Nourani A., Boudreault A.A., Zhang Y., Héliot L., Allard S., Savard J., Lane W.S., Stillman D.J., Côté J. 2000. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell. 5 (6), 927–937.

    Article  CAS  PubMed  Google Scholar 

  74. Serebryannyy L.A., Cruz, C.M., de Lanerolle P. 2016. A role for nuclear actin in HDAC 1 and 2 regulation. Sci. Rep. 6 (1), 28460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xie X., Almuzzaini B., Drou N., Kremb S., Yousif A., Farrants A. Ö., Gunsalus K., Percipalle P. 2018. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 32 (3), 1296–1314.

    Article  CAS  PubMed  Google Scholar 

  76. Grosse R., Vartiainen M.K. 2013. To be or not to be assembled: Progressing into nuclear actin filaments. Nat. Rev. Mol. Cell. Biol. 14 (11), 693–697.

    Article  CAS  PubMed  Google Scholar 

  77. Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. 2015. Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290 (18), 11209–11216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Percipalle P. 2013. Co-transcriptional nuclear actin dynamics. Nucleus. 4 (1), 43–52.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wei M., Fan X., Ding M., Li R., Shao S., Hou Y., Meng S., Tang F., Li C., Sun, Y. 2020. Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering. Sci. Adv. 6 (16), eaay6515.

  80. Percipalle P., Fomproix N., Kylberg K., Miralles F., Björkroth B., Daneholt B., Visa N. 2003. An actin–ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 100 (11), 6475–6480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sjölinder M., Björk P., Söderberg E., Sabri N., Östlund Farrants A.K., Visa N. 2005. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Gen. Dev. 19 (16), 1871–1884.

    Article  Google Scholar 

  82. Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., Grummt I. 2004). Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell. Biol. 6 (12), 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  83. Xie X., Percipalle P. 2018. An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochem. Biophys. Res. Commun. 506 (2), 378–386.

    Article  CAS  PubMed  Google Scholar 

  84. Sarshad A.A., Corcoran M., Al-Muzzaini B., Borgonovo-Brandter L., Von Euler A., Lamont D., Visa N., Percipalle P. 2014. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells. PLoS Genet. 10 (6), e1004390.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Viita T., Kyheröinen S., Prajapati B., Virtanen J., Frilander M.J., Varjosalo M., Vartiainen M.K. 2019. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J. Cell Sci. 132 (8), jcs226852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spencer V.A., Costes S., Inman J.L., Xu R., Chen J., Hendzel M.J., Bissell M.J. 2011. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124 (1), 123–132.

    Article  CAS  PubMed  Google Scholar 

  87. Almuzzaini B., Sarshad A.A., Rahmanto A.S., Hansson M.L., Von Euler A., Sangfelt O., Visa N., Farrants A.Ö., Percipalle P. 2016. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. FASEB J. 30 (8), 2860–2873.

    Article  CAS  PubMed  Google Scholar 

  88. Yoo Y., Wu X., Guan J.L. 2007. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282 (10), 7616–7623.

    Article  CAS  PubMed  Google Scholar 

  89. Wu X., Yoo Y., Okuhama N.N., Tucker P.W., Liu G., Guan J.L. 2006. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat. Cell. Biol. 8 (7), 756–763.

    Article  PubMed  Google Scholar 

  90. Miyamoto K., Teperek M., Yusa K., Allen G.E., Bradshaw C.R., Gurdon J.B. 2013. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science. 341 (6149), 1002–1005.

    Article  CAS  PubMed  Google Scholar 

  91. Xia P., Wang S., Huang G., Zhu P., Li M., Ye B., Du Y., Fan Z. 2014. WASH is required for the differentiation commitment of hematopoietic stem cells in a c‑Myc–dependent manner. J. Exp. Med. 211 (10), 2119–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vintermist A., Böhm S., Sadeghifar F., Louvet E., Mansén A., Percipalle P., Östlund Farrants A.K. 2011. The chromatin remodelling complex B-WICH changes the chromatin structure and recruits histone acetyl-transferases to active rRNA genes. PLoS One. 6 (4), e19184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Almuzzaini B., Sarshad A.A., Farrants A.K.Ö., Percipalle P. 2015. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol. 13 (1), 35.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fili N., Hari-Gupta Y., dos Santos Á., Cook A., Poland S., Ameer-Beg S.M., Parsons M., Toseland C.P. 2017. NDP52 activates nuclear myosin VI to enhance RNA polymerase II transcription. Nat. Commun. 8 (1), 1871.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fili N., Hari-Gupta Y., Aston B., dos Santos Á., Gough R.E., Alamad B., Wang L., Martin-Fernandez M.L., Toseland C.P. 2020. Competition between two high- and low-affinity protein-binding sites in myosin VI controls its cellular function. J. Biol. Chem. 295 (2), 337–347.

    Article  CAS  PubMed  Google Scholar 

  96. Cook A., Hari-Gupta Y., Toseland C.P. 2018. Application of the SSB biosensor to study in vitro transcription. Biochem. Biophys. Res. Comm. 496 (3), 820–825.

    Article  CAS  PubMed  Google Scholar 

  97. Zorca C.E., Kim L.K., Kim Y.J., Krause M.R., Zenklusen D., Spilianakis C.G., Flavell R.A. 2015. Myosin VI regulates gene pairing and transcriptional pause release in T cells. Proc. Natl. Acad. Sci. U. S. A. 112 (13), E1587–E1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Puri C., Chibalina M.V., Arden S.D., Kruppa A.J., Kendrick-Jones J., Buss F. 2010. Overexpression of myosin VI in prostate cancer cells enhances PSA and VEGF secretion, but has no effect on endocytosis. Oncogene. 29 (2), 188–200.

    Article  CAS  PubMed  Google Scholar 

  99. Loikkanen I., Toljamo K., Hirvikoski P., Väisänen T., Paavonen T.K., Vaarala M.H. 2009. Myosin VI is a modulator of androgen-dependent gene expression. Oncol. Rep. 22 (5), 991‒995.

    CAS  PubMed  Google Scholar 

  100. Venit T., Dzijak R., Kalendová A., Kahle M., Rohožková J., Schmidt V., Rülicke T., Rathkolb B., Hans W., Bohla A., Eickelberg O., Stoeger T., Wolf E., Yildirim A.Ö., Gailus-Durner V., Fuchs H., de Angelis M.H., Hozák P. 2013. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus. PLoS One. 8 (4), e61406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mehta I. S., Kulashreshtha M., Chakraborty S., Kolthur-Seetharam U., Rao B.J. 2013. Chromosome territories reposition during DNA damage-repair response. Genome Biol. 14 (12), R135.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Saidova A.A., Potashnikova D.M., Tvorogova A.V., Maly I.V., Hofmann W.A., Vorobjev I.A. 2018. Specific and reliable detection of myosin 1C isoform A by RTqPCR in prostate cancer cells. Peer J. 6, e5970.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fatakia S.N., Kulashreshtha M., Mehta I.S., Rao B.J. 2017. Chromosome territory relocation paradigm during DNA damage response: Some insights from molecular biology to physics. Nucleus. 8 (5), 449–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sokolova M., Moore H.M., Prajapati B., Dopie J., Meriläinen L., Honkanen M., Matos R.C., Poukkula M., Hietakangas V., Vartiainen M.K. 2018. Nuclear actin is required for transcription during Drosophila oogenesis. iScience. 9, 63–70.

  105. Andrin C., McDonald D., Attwood K.M., Rodrigue A., Ghosh S., Mirzayans R., Masson J.Y., Dellaire G., Hendzel M.J. 2012. A requirement for polymerized actin in DNA double-strand break repair. Nucleus. 3 (4), 384–395.

    Article  PubMed  Google Scholar 

  106. Schrank B.R., Aparicio T., Li Y., Chang W., Chait B.T., Gundersen G.G., Gottesman M.E., Gautier J. 2018. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 559 (7712), 61–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kulashreshtha M., Mehta I.S., Kumar P., Rao B.J. 2016. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by γ-H2AX signaling. Nucleic Acids Res. 44 (17), 8272–8291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Evdokimova V.N., Gandhi M., Nikitski A.V., Bakkenist C.J., Nikiforov Y.E. 2018. Nuclear myosin/actin-motored contact between homologous chromosomes is initiated by ATM kinase and homology-directed repair proteins at double-strand DNA breaks to suppress chromosome rearrangements. Oncotarget. 9 (17), 13612–13622.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li Y.R., Yang W.X. 2016. Myosins as fundamental components during tumorigenesis: Diverse and indispensable. Oncotarget. 7 (29), 46785–46812.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dunn T. A., Chen S., Fait D. A., Hicks J.L., Platz E.A., Chen Y., Ewing C.M., Sauvageot J., Isaacs W.B., De Marzo A.M., Luo J. 2006. A novel role of myosin VI in human prostate cancer. Am. J. Pathol. 169 (5), 1843–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ihnatovych I., Sielski N.L., Hofmann, W.A. 2014. Selective expression of Myosin IC isoform A in mouse and human cell lines and mouse prostate cancer tissues. PLoS One. 9 (9), e108609.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nakano T., Tani M., Nishioka M., Kohno T., Otsuka A., Ohwada S., Yokota J. 2005. Genetic and epigenetic alterations of the candidate tumor-suppressor gene MYO18B, on chromosome arm 22q, in colorectal cancer. Genes Chromosomes Cancer. 43 (2), 162–171.

    Article  CAS  PubMed  Google Scholar 

  113. Schramek D., Sendoel A., Segal J.P., Beronja S., Heller E., Oristian D., Reva B., Fuchs E. 2014. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science. 343 (6168), 309–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Borrego-Pinto J., Jegou T., Osorio D.S., Auradé F., Gorjánácz M., Koch B., Mattaj I.W., Gomes E.R. 2012. Samp1 is a component of TAN lines and is required for nuclear movement. J. Cell Sci. 125 (5), 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  115. Jayo A., Malboubi M., Antoku S., Chang W., Ortiz-Zapater E., Groen C., Pfisterer K., Tootle T., Charras G., Gundersen G.G., Parsons M. 2016. Fascin regulates nuclear movement and deformation in migrating cells. Dev. Cell. 38 (4), 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saunders C.A., Harris N.J., Willey P.T., Woolums B.M., Wang Y., McQuown A.J., Schoenhofen A., Worman H.J., Dauer W.T., Gundersen G.G., Luxton G.W.G. 2017. Torsin A controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement. J. Cell Biol. 216 (3), 657–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chang W., Folker E.S., Worman H.J., Gundersen G.G. 2013. Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Mol. Biol. Cell. 24 (24), 3869–3880.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kutscheidt S., Zhu R., Antoku S., Luxton G.W.G., Stagljar I., Fackler O.T., Gundersen G.G. 2014. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat. Cell Biol. 16 (7), 708–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maninová M., Vomastek T. 2016. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. FEBS J. 28320), 3676–3693.

  120. Khatau S.B., Hale C.M., Stewart-Hutchinson P.J., Patel M.S., Stewart C.L., Searson P.C., Hodzic D., Wirtz, D. 2009. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U. S. A. 106 (45), 19017–19022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim J.K., Louhghalam A., Lee G., Schafer B.W., Wirtz D., Kim D.H. 2017. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8 (1), 2123.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jorgens D.M., Inman J.L., Wojcik M., Robertson C., Palsdottir H., Tsai W.T., Huang H., Bruni-Cardoso A., López C.S., Bissell M.J., Xu K., Auer M. 2016. Deep nuclear invaginations linked to cytoskeletal filaments: Integrated bioimaging of epithelial cells in 3D culture. J. Cell Sci. 130 (1), 177‒189.

    PubMed  Google Scholar 

  123. Gay O., Nakamura F., Baudier J. 2011. Refilin holds the cap. Commun. Integr Biol. 4 (6), 791–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baudier J., Jenkins Z.A., Robertson S.P. 2018. The filamin-B–refilin axis—spatiotemporal regulators of the actin-cytoskeleton in development and disease. J. Cell Sci. 131 (8), jcs213959.

    Article  PubMed  Google Scholar 

  125. Wu J., Kent I.A., Shekhar N., Chancellor T.J., Mendonca A., Dickinson R.B., Lele T.P. 2014. Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys. J. 106 (1), 7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Thiam H.R., Vargas P., Carpi N., Crespo C.L., Raab M., Terriac E., King M.C., Jacobelli J., Alberts A.S., Stradal T., Lennon-Dumenil A.M., Piel M. 2016. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7 (1), 10997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shao X., Li Q., Mogilner A., Bershadsky A.D. Shivashankar G.V. 2015. Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc. Natl. Acad. Sci. U. S. A. 112 (20), E2595–E2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wales P., Schuberth C.E., Aufschnaiter R., Fels J., García-Aguilar I., Janning A., Dlugos C.P., Schäfer-Herte M., Klingner C., Wälte M., Kuhlmann J., Menis E., Hockaday Kang L., Maier K.C., Hou W., Russo A., Higgs H.N., Pavenstädt H., Vogl T., Wedlich-Söldner R. 2016. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife. 5, e19850.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Le H.Q., Ghatak S., Yeung C.Y.C., Tellkamp F., Günschmann C., Dieterich C., Yeroslaviz A., Haber-mann B., Pombo A., Niessen C.M., Wickström S.A. 2016. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell. Biol. 18 (8), 864–875.

    Article  CAS  PubMed  Google Scholar 

  130. Gilbert H.T.J., Mallikarjun V., Dobre O., Jackson M.R., Pedley R., Gilmore A.P., Richardson S.M., Swift J. 2019. Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading. Nat. Commun. 10 (1), 4149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Norden C., Young S., Link B.A., Harris W.A. 2009. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell. 138 (6), 1195–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Strzyz P.J., Lee H.O., Sidhaye J., Weber I.P., Leung L.C., Norden C. 2015. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell. 32 (2), 203–219.

    Article  CAS  PubMed  Google Scholar 

  133. Yanakieva I., Erzberger A., Matejčić M., Modes C.D., Norden C. 2019. Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. J. Cell Biol. 218 (10), 3272–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lahne M., Li J., Marton R.M., Hyde D.R. 2015. Actin-cytoskeleton- and rock-mediated INM are required for photoreceptor regeneration in the adult zebrafish retina. J. Neurosci. 35 (47), 15612–15634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kirkland N.J., Yuen A.C., Tozluoglu M., Hui N., Paluch E.K., Mao Y. 2020. Tissue mechanics regulate mitotic nuclear dynamics during epithelial development. Curr. Biol. 30 (13), 2419‒2432.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu J., Lei K., Zhou M., Craft C.M., Xu G., Xu T., Zhuang Y., Xu R., Han M. 2011. KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum. Mol. Genet. 20 (6), 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  137. Roman W., Martins J.P., Carvalho F. A., Voituriez R., Abella J.V.G., Santos N.C., Cadot B., Way M., Gomes E.R. 2017. Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nat. Cell. Biol. 19 (10), 1189–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Huelsmann S., Ylänne J., Brown, N.H. 2013. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells. Dev. Cell. 26 (6), 604–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Burke B. 2019. Chain reaction: LINC complexes and nuclear positioning. F1000Res. 8, 136.

    Article  CAS  Google Scholar 

  140. Luxton G.W.G., Gomes E.R., Folker E.S., Vintinner E., Gundersen G.G. 2010. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 329 (5994), 956–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu R., Antoku S., Gundersen G.G. 2017. Centrifugal displacement of nuclei reveals multiple LINC complex mechanisms for homeostatic nuclear positioning. Curr. Biol. 27 (20), 3097‒3110.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stenzel W., Preusse C., Allenbach Y., Pehl D., Junckerstorff R., Heppner F. L., Nolte K, Aronica E., Kana V., Rushing E., Schneider U., Claeys K.G., Benveniste O., Weis J., Goebel H.H. 2015. Nuclear actin aggregation is a hallmark of anti-synthetase syndrome-induced dysimmune myopathy. Neurology. 84, 1346–1354.

    Article  CAS  PubMed  Google Scholar 

  143. Munsie L., Caron N., Atwal R.S., Marsden I., Wild E.J., Bamburg J.R., Tabrizi S.J., Truant R. 2011. Mutant huntingtin causes defective actin remodeling during stress: Defining a new role for transglutaminase 2 in neurodegenerative disease. Hum. Mol. Genet. 20, 1937–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bamburg J.R., Wiggan O.P. 2002. ADF/cofilin and actin dynamics in disease. Trends Cell. Biol. 12, 598–605.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 22-24-00714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Saidova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidova, A.A., Vorobjev, I.A. What Actin and Myosin Do in the Nucleus: New Functions of the Well-Known Proteins. Mol Biol (2024). https://doi.org/10.1134/S002689332470002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S002689332470002X

Keywords:

Navigation