Skip to main content
Log in

The Application of Extended Reality in Treating Children with Autism Spectrum Disorder

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder in children, characterized by social interaction, communication difficulties, and repetitive and stereotyped behaviors. Existing intervention methods have limitations, such as requiring long treatment periods and needing to be more convenient to implement. Extended Reality (XR) technology offers a virtual environment to enhance children's social, communication, and self-regulation skills. This paper compares XR theoretical models, application examples, and intervention effects. The study reveals that XR intervention therapy is mainly based on cognitive rehabilitation, teaching, and social-emotional learning theories. It utilizes algorithms, models, artificial intelligence (AI), eye-tracking, and other technologies for interaction, achieving diverse intervention outcomes. Participants showed effective improvement in competency barriers using XR-based multimodal interactive platforms. However, Mixed Reality (MR) technology still requires further development. Future research should explore multimsodal interaction technologies combining XR and AI, optimize models, prioritize the development of MR intervention scenarios, and sustain an optimal intervention level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dai Y, Liu Y, Zhang L, Ren T, Wang H, Yu J. Shanghai autism early development: An integrative Chinese ASD cohort. Neurosci Bull 2022, 38: 1603–1607.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sasson NJ, Faso DJ, Nugent J, Lovell S, Kennedy DP, Grossman RB. Neurotypical Peers are Less Willing to Interact with Those with Autism based on Thin Slice Judgments. Sci Rep 2017, 7: 40700.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corsello CM. Early intervention in autism. Infants Young Child 2005, 18: 74–85.

    Article  Google Scholar 

  4. Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, et al. Randomized controlled trial of the Early Start Denver Model. Pediatrics 2010, 125: e17–e23.

    Article  PubMed  Google Scholar 

  5. Pasco G. The value of early intervention for children with autism. Paediatr Child Health 2018, 28: 364–367.

    Article  Google Scholar 

  6. Reichow B. Overview of meta-analyses on early intensive behavioral intervention for young children with autism spectrum disorders. J Autism Dev Disord 2012, 42: 512–520.

    Article  PubMed  Google Scholar 

  7. Liu J, Bian Y, Xi Y, Zheng Y, Huang J, Gai W, et al. Evaluating the role of mixed reality in cognitive training of children with ASD: Evidence from a mixed reality aquarium. Int J Hum Comput Stud 2022, 162: 102815.

    Article  Google Scholar 

  8. Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: A systematic review update. Autism Res 2022, 15: 778–790.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Karami B, Koushki R, Arabgol F, Rahmani M, Vahabie AH. Effectiveness of virtual/augmented reality-based therapeutic interventions on individuals with autism spectrum disorder: A comprehensive meta-analysis. Front Psychiatry 2021, 12: 665326.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Virues-Ortega J, Julio FM, Pastor-Barriuso R. The TEACCH program for children and adults with autism: A meta-analysis of intervention studies. Clin Psychol Rev 2013, 33: 940–953.

    Article  PubMed  Google Scholar 

  11. Eldevik S, Hastings RP, Hughes JC, Jahr E, Eikeseth S, Cross S. Meta-analysis of Early Intensive Behavioral Intervention for children with autism. J Clin Child Adolesc Psychol 2009, 38: 439–450.

    Article  PubMed  Google Scholar 

  12. Makrygianni MK, Gena A, Katoudi S, Galanis P. The effectiveness of applied behavior analytic interventions for children with Autism Spectrum Disorder: A meta-analytic study. Res Autism Spectr Disord 2018, 51: 18–31.

    Article  Google Scholar 

  13. Weitlauf AS, McPheeters ML, Peters B, Sathe N, Travis R, Aiello R, et al. Therapies for children with autism spectrum disorder: Behavioral interventions update [internet. 2014.

  14. Reiners D, Davahli MR, Karwowski W, Cruz-Neira C. The combination of artificial intelligence and extended reality: A systematic review. Front Virtual Real 2021, 2: 721933.

    Article  Google Scholar 

  15. Anderson A, Boppana A, Wall R, Acemyan CZ, Adolf J, Klaus D. Framework for developing alternative reality environments to engineer large, complex systems. Virtual Real 2021, 25: 147–163.

    Article  Google Scholar 

  16. Chen Y, Zhou Z, Cao M, Liu M, Lin Z, Yang W, et al. Extended Reality (XR) and telehealth interventions for children or adolescents with autism spectrum disorder: Systematic review of qualitative and quantitative studies. Neurosci Biobehav Rev 2022, 138: 104683.

    Article  PubMed  Google Scholar 

  17. Schertz HH, Baker C, Hurwitz S, Benner L. Principles of early intervention reflected in toddler research in autism spectrum disorders. Top Early Child Spec Educ 2011, 31: 4–21.

    Article  Google Scholar 

  18. Zhang M, Ding H, Naumceska M, Zhang Y. Virtual reality technology as an educational and intervention tool for children with autism spectrum disorder: Current perspectives and future directions. Behav Sci 2022, 12: 138.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller IT, Wiederhold BK, Miller CS, Wiederhold MD. Virtual reality air travel training with children on the autism spectrum: A preliminary report. Cyberpsychol Behav Soc Netw 2020, 23: 10–15.

    Article  PubMed  Google Scholar 

  20. Neuner F, Catani C, Ruf M, Schauer E, Schauer M, Elbert T. Narrative exposure therapy for the treatment of traumatized children and adolescents (KidNET): From neurocognitive theory to field intervention. Child Adolesc Psychiatr Clin N Am 2008, 17: 641–664.

    Article  PubMed  Google Scholar 

  21. Zheng JM, Chan KW, Gibson I. Virtual reality. IEEE Potentials 1998, 17: 20–23.

    Article  Google Scholar 

  22. Burdea G, Coiffet P. Virtual reality technology. Presence 2003, 12: 663–664.

    Article  Google Scholar 

  23. Kipper G, Rampolla J (2012) Augmented reality: An emerging technologies guide to AR. Elsevier.

    Google Scholar 

  24. Yuen SCY, Yaoyuneyong G, Johnson E. Augmented reality: An overview and five directions for AR in education. J Educ Technol Dev Exch 2011, 4: 119–140.

    Google Scholar 

  25. Speicher M, Hall BD, Nebeling M. What is mixed reality? Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. May 4–9, 2019, Glasgow, Scotland UK. ACM, 2019: 1–15.

  26. Hu HZ, Feng XB, Shao ZW, Xie M, Xu S, Wu XH, et al. Application and prospect of mixed reality technology in medical field. Curr Med Sci 2019, 39: 1–6.

    Article  CAS  PubMed  Google Scholar 

  27. Morimoto T, Kobayashi T, Hirata H, Otani K, Sugimoto M, Tsukamoto M, et al. XR (extended reality: Virtual reality, augmented reality, mixed reality) technology in spine medicine: Status quo and quo vadis. J Clin Med 2022, 11: 470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andrews C, Southworth MK, Silva JNA, Silva JR. Extended reality in medical practice. Curr Treat Options Cardiovasc Med 2019, 21: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang K, Julier SJ, Cho Y. Attention-based applications in extended reality to support autistic users: A systematic review. IEEE Access 2022, 10: 15574–15593.

    Article  Google Scholar 

  30. Wilson BA. Cognitive rehabilitation: How it is and how it might be. J Int Neuropsychol Soc 1997, 3: 487–496.

    Article  CAS  PubMed  Google Scholar 

  31. Voinescu I. Introduction to cognitive rehabilitation. Theory and practice. Neuropsychologia 1990, 28: 1008–1009.

    Article  Google Scholar 

  32. Clare L, Wilson BA, Carter G, Hodges JR. Cognitive rehabilitation as a component of early intervention in Alzheimer’s disease: A single case study. Aging Ment Health 2003, 7: 15–21.

    Article  CAS  PubMed  Google Scholar 

  33. Kort B, Reilly R, Picard RW. An affective model of interplay between emotions and learning: Reengineering educational pedagogy-building a learning companion. Proceedings IEEE International Conference on Advanced Learning Technologies. Madison, WI, USA. IEEE, 2002: 43–46.

  34. Lorenzo G, Lledó A, Pomares J, Roig R. Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Comput Educ 2016, 98: 192–205.

    Article  Google Scholar 

  35. Chang RC, Yu ZS. Application of Augmented Reality technology to promote interactive learning. 2017 International Conference on Applied System Innovation (ICASI). Sapporo, Japan. IEEE, 2017: 1673–1674.

  36. Axe JB, Evans CJ. Using video modeling to teach children with PDD-NOS to respond to facial expressions. Res Autism Spectr Disord 2012, 6: 1176–1185.

    Article  Google Scholar 

  37. Chien CH, Chen CH, Jeng TS. An interactive augmented reality system for learning anatomy structure. Proc Int MultiConference Eng Comput Sci 2010 IMECS 2010 2010: 370–375.

  38. Shelton BE, Hedley NR. Using augmented reality for teaching Earth-Sun relationships to undergraduate geography students. The First IEEE International Workshop Agumented Reality Toolkit. Darmstadt, Germany. IEEE, 2003: 8pp.

  39. Csíkszentmihályi M. Play and intrinsic rewards. J Humanist Psychol 1975, 15: 41–63.

    Article  Google Scholar 

  40. Yuan SNV, Ip HHS. Using virtual reality to train emotional and social skills in children with autism spectrum disorder. London J Prim Care 2018, 10: 110–112.

    Article  Google Scholar 

  41. Ye HS. Embodied cognition: A consideration from theoretical psychology. Acta Psychol Sin 2011, 43: 589–598.

    Google Scholar 

  42. Crowell C, Sayis B, Benitez JP, Pares N. Mixed reality, full-body interactive experience to encourage social initiation for autism: Comparison with a control nondigital intervention. Cyberpsychol Behav Soc Netw 2020, 23: 5–9.

    Article  PubMed  Google Scholar 

  43. Mubin SA, Thiruchelvam V, Andrew YW. Extended reality: How they incorporated for ASD intervention. 2020 8th International Conference on Information Technology and Multimedia (ICIMU). Selangor, Malaysia. IEEE, 2020: 262–266.

  44. Qazi S, Raza K. Towards a VIREAL platform: Virtual reality in cognitive and behavioural training for autistic individuals. Advanced Computational Intelligence Techniques for Virtual Reality in Healthcare. Cham: Springer, 2020: 25–47.

  45. Abbas H, Garberson F, Liu-Mayo S, Glover E, Wall DP. Multi-modular AI approach to streamline autism diagnosis in young children. Sci Rep 2020, 10: 5014.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi J. The application of AI as reinforcement in the intervention for children with autism spectrum disorders (ASD). J Educ Dev Psychol 2019, 9: 17.

    Article  Google Scholar 

  47. Lakhan A, Mohammed MA, Abdulkareem KH, Hamouda H, Alyahya S. Autism Spectrum Disorder detection framework for children based on federated learning integrated CNN-LSTM. Comput Biol Med 2023, 4(166): 107539. https://doi.org/10.1016/j.compbiomed.2023.107539.

    Article  Google Scholar 

  48. Sahin NT, Keshav NU, Salisbury JP, Vahabzadeh A. Safety and Lack of Negative Effects of Wearable Augmented-Reality Social Communication Aid for Children and Adults with Autism. J Clin Med 2018, 7: 188.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Estrada J, Paheding S, Yang X, Niyaz Q. Deep-learning-incorporated augmented reality application for engineering lab training. Appl Sci 2022, 12: 5159.

    Article  CAS  Google Scholar 

  50. Mayor Torres JM, Clarkson T, Hauschild KM, Luhmann CC, Lerner MD, Riccardi G. Facial Emotions Are Accurately Encoded in the Neural Signal of Those With Autism Spectrum Disorder: A Deep Learning Approach. Biol Psychiatry Cogn Neurosci Neuroimaging 2022, 7: 688–695.

    PubMed  Google Scholar 

  51. Cheng Y, Bololia L. The effects of augmented reality on social skills in children with an autism diagnosis: A preliminary systematic review. J Autism Dev Disord 2023, https://doi.org/10.1007/s10803-022-05878-4.

    Article  PubMed  Google Scholar 

  52. Leharanger M, Rodriguez Martinez EA, Balédent O, Vandromme L. Familiarization with Mixed Reality for Individuals with Autism Spectrum Disorder: An Eye Tracking Study. Sensors 2023, 23: 6304.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Mehta D, Siddiqui MFH, Javaid AY. Facial emotion recognition: A survey and real-world user experiences in mixed reality. Sensors 2018, 18: 416.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Strickland DC, McAllister D, Coles CD, Osborne S. An evolution of virtual reality training designs for children with autism and fetal alcohol spectrum disorders. Top Lang Disord 2007, 27: 226–241.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lahiri U, Bekele E, Dohrmann E, Warren Z, Sarkar N. Design of a virtual reality based adaptive response technology for children with autism. IEEE Trans Neural Syst Rehabil Eng 2013, 21: 55–64.

    Article  PubMed  Google Scholar 

  56. Kuriakose S, Lahiri U. Design of a physiology-sensitive VR-based social communication platform for children with autism. IEEE Trans Neural Syst Rehabil Eng 2017, 25: 1180–1191.

    Article  PubMed  Google Scholar 

  57. Psaltis C, Duveen G. Conservation and conversation types: Forms of recognition and cognitive development. British J Dev Psycho 2007, 25: 79–102.

    Article  Google Scholar 

  58. de Luca R, Leonardi S, Portaro S, Le Cause M, de Domenico C, Colucci PV, et al. Innovative use of virtual reality in autism spectrum disorder: A case-study. Appl Neuropsychol Child 2021, 10: 90–100.

    Article  PubMed  Google Scholar 

  59. Cai Y, Chia NKH, Thalmann D, Kee NKN, Zheng J, Thalmann NM. Design and development of a Virtual Dolphinarium for children with autism. IEEE Trans Neural Syst Rehabil Eng 2013, 21: 208–217.

    Article  PubMed  Google Scholar 

  60. Almeida AFS, Silva TDD, Moraes Í AP, Menezes LDC, Dias ED, Araújo LV, et al. Virtual reality as a telerehabilitation strategy for people with autism spectrum disorder during the COVID-19 quarantine scenario: physical activity, motor performance and enjoyment. Disabil Rehabil Assist Technol 2023: 1–11.

  61. Koirala A, Yu Z, Schiltz H, Van Hecke A, Armstrong B, Zheng Z. A preliminary exploration of virtual reality-based visual and touch sensory processing assessment for adolescents with autism spectrum disorder. IEEE Trans Neural Syst Rehabil Eng 2021, 29: 619–628.

    Article  PubMed  Google Scholar 

  62. Bekele E, Zheng Z, Swanson A, Crittendon J, Warren Z, Sarkar N. Understanding how adolescents with autism respond to facial expressions in virtual reality environments. IEEE Trans Vis Comput Graph 2013, 19: 711–720.

    Article  PubMed  Google Scholar 

  63. Boraston Z, Blakemore SJ. The application of eye-tracking technology in the study of autism. J Physiol 2007, 581: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elkin TD, Zhang Y, Reneker JC. Gaze fixation and visual searching behaviors during an immersive virtual reality social skills training experience for children and youth with autism spectrum disorder: A pilot study. Brain Sci 2022, 12: 1568.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hocking DR, Ardalan A, Abu-Rayya HM, Farhat H, Andoni A, Lenroot R, et al. Feasibility of a virtual reality-based exercise intervention and low-cost motion tracking method for estimation of motor proficiency in youth with autism spectrum disorder. J Neuroeng Rehabil 2022, 19: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Varma M, Washington P, Chrisman B, Kline A, Leblanc E, Paskov K, et al. Identification of social engagement indicators associated with autism spectrum disorder using a game-based mobile app: Comparative study of gaze fixation and visual scanning methods. J Med Internet Res 2022, 24: e31830.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu X, Zhao W, Qi Q, Luo X. A survey on autism care, diagnosis, and intervention based on mobile apps focusing on usability and software design. Sensors 2023, 23: 6260.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Chen CH, Lee IJ, Lin LY. Augmented reality-based self-facial modeling to promote the emotional expression and social skills of adolescents with autism spectrum disorders. Res Dev Disabil 2015, 36C: 396–403.

    Article  PubMed  Google Scholar 

  69. Antão JYFL, Abreu LC, Barbosa RTA, Crocetta TB, Guarnieri R, Massetti T, et al. Use of augmented reality with a motion-controlled game utilizing alphabet letters and numbers to improve performance and reaction time skills for people with autism spectrum disorder. Cyberpsychol Behav Soc Netw 2020, 23: 16–22.

    Article  PubMed  Google Scholar 

  70. Almurashi H, Bouaziz R, Alharthi W, Al-Sarem M, Hadwan M, Kammoun S. Augmented reality, serious games and picture exchange communication system for people with ASD: Systematic literature review and future directions. Sensors 2022, 22: 1250.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Panceri JAC, Freitas É, de Souza JC, da Luz Schreider S, Caldeira E, Bastos TF. A new socially assistive robot with integrated serious games for therapies with children with autism spectrum disorder and down syndrome: A pilot study. Sensors 2021, 21: 8414.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee IJ, Chen CH, Wang CP, Chung CH. Augmented reality plus concept map technique to teach children with ASD to use social cues when meeting and greeting. Asia Pac Educ Res 2018, 27: 227–243.

    Article  Google Scholar 

  73. Pas ET, Johnson SR, Larson KE, Brandenburg L, Church R, Bradshaw CP. Reducing behavior problems among students with autism spectrum disorder: Coaching teachers in a mixed-reality setting. J Autism Dev Disord 2016, 46: 3640–3652.

    Article  PubMed  Google Scholar 

  74. Lorenzo G, Gómez-Puerta M, Arráez-Vera G, Lorenzo-Lledó A. Preliminary study of augmented reality as an instrument for improvement of social skills in children with autism spectrum disorder. Educ Inf Technol 2019, 24: 181–204.

    Article  Google Scholar 

  75. Amat AZ, Zhao H, Swanson A, Weitlauf AS, Warren Z, Sarkar N. Design of an interactive virtual reality system, InViRS, for joint attention practice in autistic children. IEEE Trans Neural Syst Rehabil Eng 2021, 29: 1866–1876.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ravindran V, Osgood M, Sazawal V, Solorzano R, Turnacioglu S. Virtual reality support for joint attention using the floreo joint attention module: Usability and feasibility pilot study. JMIR Pediatr Parent 2019, 2: e14429.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Frolli A, Savarese G, Di Carmine F, Bosco A, Saviano E, Rega A, et al. Children on the autism spectrum and the use of virtual reality for supporting social skills. Children 2022, 9: 181.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Smith MJ, Ginger EJ, Wright K, Wright MA, Taylor JL, Humm LB, et al. Virtual reality job interview training in adults with autism spectrum disorder. J Autism Dev Disord 2014, 44: 2450–2463.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huang YC, Lee IJ. A study on the development of a mixed reality system applied to the practice of socially interactive behaviors of children with autism spectrum disorder. International Conference on Human-Computer Interaction. Cham: Springer, 2019: 283–296.

  80. McEvoy RE, Rogers SJ, Pennington BF. Executive function and social communication deficits in young autistic children. J Child Psychol Psychiatry 1993, 34: 563–578.

    Article  CAS  PubMed  Google Scholar 

  81. Taryadi Kurniawan I. The improvement of autism spectrum disorders on children communication ability with PECS method Multimedia Augmented Reality-Based. J Phys: Conf Ser 2018, 947: 012009.

    Google Scholar 

  82. Chu L, Shen L, Ma C, Chen J, Tian Y, Zhang C, et al. Effects of a nonwearable digital therapeutic intervention on preschoolers with autism spectrum disorder in China: Open-label randomized controlled trial. J Med Internet Res 2023, 25: e45836.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Iza M, Olfson M, Vermes D, Hoffer M, Wang S, Blanco C. Probability and predictors of first treatment contact for anxiety disorders in the United States: Analysis of data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). J Clin Psychiatry 2013, 74: 1093–1100.

    Article  PubMed  Google Scholar 

  84. Maskey M, Rodgers J, Ingham B, Freeston M, Evans G, Labus M, et al. Using virtual reality environments to augment cognitive behavioral therapy for fears and phobias in autistic adults. Autism Adulthood 2019, 1: 134–145.

    Article  PubMed  Google Scholar 

  85. Liu R, Salisbury JP, Vahabzadeh A, Sahin NT. Feasibility of an autism-focused augmented reality smartglasses system for social communication and behavioral coaching. Front Pediatr 2017, 5: 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Magrini M, Curzio O, Carboni A, Moroni D, Salvetti O, Melani A. Augmented interaction systems for supporting autistic children. evolution of a multichannel expressive tool: The SEMI project feasibility study. Appl Sci 2019, 9: 3081.

    Article  Google Scholar 

  87. Pons P, Navas-Medrano S, Soler-Dominguez JL. Extended reality for mental health: Current trends and future challenges. Front Comput Sci 2022, 4: 1034307.

    Article  Google Scholar 

  88. Wedyan M, AL-Jumaily A, Dorgham O. The use of augmented reality in the diagnosis and treatment of autistic children: A review and a new system. Multimed Tools Appl 2020, 79: 18245–18291.

    Article  Google Scholar 

  89. McCleery JP, Zitter A, Solórzano R, Turnacioglu S, Miller JS, Ravindran V, et al. Safety and feasibility of an immersive virtual reality intervention program for teaching police interaction skills to adolescents and adults with autism. Autism Res 2020, 13: 1418–1424.

    Article  PubMed  Google Scholar 

  90. Zhang L, Weitlauf AS, Amat AZ, Swanson A, Warren ZE, Sarkar N. Assessing social communication and collaboration in autism spectrum disorder using intelligent collaborative virtual environments. J Autism Dev Disord 2020, 50: 199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hojjati M, Bejestani GS, Ashrafzadeh F. Investigation on the Effectiveness of Holistic Multi-dimensional Treatment Model (HMTM) in Improvement of CARS Test Indicators in Children suffering from Autism Spectrum Disorder. Int J Pediatr 2015, 3: 543–553.

    Google Scholar 

  92. Sun W, Mo C. High-speed real-time augmented reality tracking algorithm model of camera based on mixed feature points. J Real Time Image Process 2021, 18: 249–259.

    Article  Google Scholar 

  93. Montedori F, Mattei FR, Özcan B, Schembri M, Sperati V, Baldassarre G. A novel system based on a smart toy responding to child’s facial expressions: Potential use in early treatment of autism spectrum disorders. Stephanidis C, Antona M, Ntoa S, Salvendy G. International Conference on Human-Computer Interaction. Cham: Springer, 2022: 188–196.

Download references

Acknowledgments

We would like to acknowledge Quan Zhou for helpful comments in establishing the research topic. This review was supported by grants from the National Natural Science Foundation of China (82301735), The University Synergy Innovation Program of Anhui Province (GXXT-2021-003), and The Basic and Clinical Collaborative Research Enhancement Programme of Anhui Medical University (2022xkjT016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Xu, S., Zhang, Y. et al. The Application of Extended Reality in Treating Children with Autism Spectrum Disorder. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01190-6

Keywords

Navigation