Skip to main content
Log in

Theoretical Period–Radius and Period–Luminosity Relations for Mira Variables with Solar Metallicity

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Evolutionary sequences of AGB stars with initial masses on the main sequence \(M_{\textrm{ZAMS}}=1.5\;M_{\odot}\), \(2\;M_{\odot}\), and \(3\;M_{\odot}\) were computed for the initial metallicity \(Z=0.014\). Selected models of evolutionary sequences with envelopes under thermal equilibrium were used as initial conditions for calculation of nonlinear stellar pulsations. The hydrodynamic models of each evolutionary sequence are shown to concentrate along the continuous line in the period–radius and period–luminosity diagrams. The theoretical period–radius and period–luminosity relations differ from one another for different main–sequence star masses because the stellar luminosity of AGB stars depends on the degenerate carbon core mass which increases with increasing \(M_{\textrm{ZAMS}}\). In hydrodynamic models of evolutionary sequences \(M_{\textrm{ZAMS}}=2\) and \(3\;M_{\odot}\) the periods of the first overtone pulsators are \(86\leq\Pi\leq 123\textrm{d}\) and \(174\leq\Pi\leq 204\textrm{d}\), whereas all models of the evolutionary sequence \(M_{\textrm{ZAMS}}=1.5\;M_{\odot}\) oscillate in the fundamental mode. Fairly regular radial oscillations exist in stars with pulsation periods \(\Pi\lesssim 500\) d. In models with longer periods the amplitude rapidly increases with increasing \(\Pi\) and oscillations become irregular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. M. Andriantsaralaza, S. Ramstedt, W. H. T. Vlemmings, and E. de Beck, Astron. Astrophys. 667, A74 (2022).

    Article  ADS  Google Scholar 

  2. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  3. T. Blöcker, Astron. Astrophys. 297, 727 (1995).

    ADS  Google Scholar 

  4. E. Böhm-Vitense, Zeitschr. Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  5. J. O. Chibueze, R. Urago, T. Omodaka, Yu. Morikawa, M. Y. Fujimoto, A. Nakagawa, T. Nagayama, T. Nagayama, and K. Hirano, Publ. Astron. Soc. Jpn. 72, 59 (2020).

    Article  ADS  Google Scholar 

  6. R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann, and M. Wiescher, Astrophys. J. Suppl. Ser. 189, 240 (2010).

    Article  ADS  Google Scholar 

  7. Yu. A. Fadeyev, Astron. Lett. 39, 306 (2013).

    Article  ADS  Google Scholar 

  8. Yu. A. Fadeyev, Mon. Not. R. Astron. Soc. 514, 5996 (2022).

    Article  ADS  Google Scholar 

  9. M. W. Feast, Mon. Not. R. Astron. Soc. 211, 51 (1984).

    Article  ADS  Google Scholar 

  10. M. W. Feast, Observatory 105, 85 (1985).

    ADS  Google Scholar 

  11. M. W. Feast, I. S. Glass, P. A. Whitelock, and R. M. Catchpole, Mon. Not. R. Astron. Soc. 241, 375 (1989).

    Article  ADS  Google Scholar 

  12. I. S. Glass and T. Lloyd Evans, Nature (London, U.K.) 291, 303 (1981).

    Article  ADS  Google Scholar 

  13. I. S. Glass and M. W. Feast, Mon. Not. R. Astron. Soc. 198, 199 (1982a).

    Article  ADS  Google Scholar 

  14. I. S. Glass and M. W. Feast, Mon. Not. R. Astron. Soc. 199, 245 (1982b).

    Article  ADS  Google Scholar 

  15. M. A. T. Groenewegen and P. A. Whitelock, Mon. Not. R. Astron. Soc. 281, 1347 (1996).

    Article  ADS  Google Scholar 

  16. F. Herwig, Astron. Astrophys. 360, 952 (2000).

    ADS  Google Scholar 

  17. C. D. Huang, A. G. Riess, S. L. Hoffmann, Ch. Klein, J. Bloom, W. Yuan, M. M. Lucas, D. O. Jones, P. A. Whitelock, S. Casertano, and R. I. Anderson, Astrophys. J. 857, 67 (2018).

    Article  ADS  Google Scholar 

  18. R. Kuhfuß, Astron. Astrophys. 160, 116 (1986).

    ADS  Google Scholar 

  19. J. Mould, A. Saha Abhijit, and S. Hughes, Astrophys. J. Suppl. Ser. 154, 623 (2004).

    Article  ADS  Google Scholar 

  20. J. Mould, J. R. Graham, K. Matthews Keith, G. Neugebauer, and J. Elias, Astrophys. J. 349, 503 (1990).

    Article  ADS  Google Scholar 

  21. B. Paczyski, Acta Astron. 20, 47 (1970).

    ADS  Google Scholar 

  22. B. Paxton, R. Smolec, J. Schwab, A. Gautschy, L. Bildsten, M. Cantiello, A. Dotter, R. Farmer, J. A. Goldberg, A. S. Jermyn, S. M. Kanbur, P. Marchant, A. Thoul, R. H. D. Townsend, W. M. Wolf, M. Zhang, and F. X. Timmes, Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  ADS  Google Scholar 

  23. M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F. X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, and P. Young, Astrophys. J. Suppl. Ser. 225, 24 (2016).

    Article  ADS  Google Scholar 

  24. D. Reimers, in Problems in Stellar Atmospheres and Envelopes, Ed. by B. Baschek, W. H. Kegel, and G. Traving (Springer, New York, 1975), p. 229.

    Google Scholar 

  25. Y. Sun, B. Zhang, M. J. Reid, Sh. Xu, Sh. Wen, J. Zhang, and X. Zheng, Astrophys. J. 931, 74 (2022).

    Article  ADS  Google Scholar 

  26. Y. Tuchman, N. Sack, and Z. Barkat, Astrophys. J. 219, 183 (1978).

    Article  ADS  Google Scholar 

  27. Y. Tuchman, N. Sack, and Z. Barkat, Astrophys. J. 234, 217 (1979).

    Article  ADS  Google Scholar 

  28. R. Urago Riku, R. Yamaguchi, T. Omodaka, T. Nagayama, J. O. Chibueze, M. Y. Fujimoto, T. Nagayama, A. Nakagawa, Yu. Ueno, M. Kawabata, T. Nakaoka, K. Takagi, M. Yamanaka, and K. Kawabata, Publ. Astron. Soc. Jpn. 72, 57 (2020).

    Article  ADS  Google Scholar 

  29. U. Uus, Nauch. Inform. Astron. Sov. AN SSSR 17, 25 (1970).

    Google Scholar 

  30. P. A. Whitelock, F. Marang Freddy, and M. W. Feast, Mon. Not. R. Astron. Soc. 319, 728 (2000).

    Article  ADS  Google Scholar 

  31. P. A. Whitelock and M. W. Feast, Mon. Not. R. Astron. Soc. 319, 759 (2000).

    Article  ADS  Google Scholar 

  32. P. A. Whitelock, J. W. Menzies, M. W. Feast, F. Nsengiyumva, and N. Matsunaga, Mon. Not. R. Astron. Soc. 428, 2216 (2013).

    Article  ADS  Google Scholar 

  33. L. A. Willson, Ann. Rev. Astron. Astrophys. 38, 573 (2000).

    Article  ADS  Google Scholar 

  34. W. Yuan, M. M. Lucas, A. Javadi, Zh. Lin, and J. Z. Huang, Astron. J. 156, 112 (2018).

    Article  ADS  Google Scholar 

  35. H. Zhang and J. L. Sanders, Mon. Not. R. Astron. Soc. 521, 1462 (2023).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fadeyev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by Yu. A. Fadeev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeyev, Y.A. Theoretical Period–Radius and Period–Luminosity Relations for Mira Variables with Solar Metallicity. Astron. Lett. 49, 722–730 (2023). https://doi.org/10.1134/S1063773723110014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110014

Keywords:

Navigation