Skip to main content
Log in

Nature of the Eclipsing Polar 1RXS J184542.4\(+\)483134

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have carried out a comprehensive study of the poorly investigated eclipsing polar 1RXS J184542.4\(+\)483134 with a short orbital period \(P_{\textrm{orb}}\approx 79\) min. An analysis of its long-term light curves points to a change in the position and sizes of the accretion spot as the accretion rate changes. Narrow and broad components, which are probably formed on the ballistic segment of the accretion stream and on the magnetic trajectory, respectively, are identified in the emission line profiles. An inversion of the line profiles from emission to absorption due to the obscuration of the accretion spot by the accretion stream is observed. Based on the eclipse duration and the radial velocities of the narrow line component, we impose constraints on the white dwarf mass, \(0.49\leq M_{1}/\;M_{\odot}\leq 0.89\), and the orbital inclination, \(79.7^{\circ}\leq i\leq 84.3^{\circ}\). An analysis of the cyclotron spectra points to the presence of two accretion spots with magnetic field strengths \(B_{1}=28.4^{+0.1}_{-0.2}\) MG and \(B_{2}=30{-}36\) MG. The main spot has a complex structure that apparently has a dense core and a less dense periphery emitting a spectrum with cyclotron harmonics. Polarization observations reveal a circular polarization sign reversal during the orbital period and an anticorrelation of the polarization with the brightness of the polar. Our modeling of polarization observations using the simple model of an accreting white dwarf shows that the polarization properties can be interpreted in terms of two-pole accretion with different optical depths of the accretion spots (\(\tau_{1}/\tau_{2}\sim 10\)). An analysis of the Swift/XRT observations points to a predominance of bremsstrahlung in the X-ray radiation from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. For more details on the SCORPIO-2 focal reducer, see https://www.sao.ru/hq/lsfvo/devices/scorpio-2/index.html.

  2. For more details on the SCORPIO focal reducer, see https://www.sao.ru/hq/lsfvo/devices/scorpio/scorpio.html.

  3. The IRAF astronomical data processing and analysis package was developed by the National Optical Astronomy Observatory (USA) and is accessible at https://iraf-community.github.io.

  4. The Swift/XRT observational data extraction service is accessible at https://www.swift.ac.uk/user_objects/.

  5. The HEASoft software package is accessible at https://heasarc.gsfc.nasa.gov/lheasoft/.

  6. The service on determining the interstellar extinction from the maps by Schlafly and Finkbeiner (2011) is accessible at https://irsa.ipac.caltech.edu/applications/DUST/.

  7. The service for work with the 3D interstellar extinction maps by Lallement et al. (2014) is accessible at https://stilism.obspm.fr/.

  8. The service for work with the 3D interstellar extinction maps by Green et al. (2019) is accessible at http://argonaut.skymaps.info/.

REFERENCES

  1. V. L. Afanasiev and V. R. Amirkhanyan, Astrophys. Bull. 67, 438 (2012).

    Article  ADS  Google Scholar 

  2. V. L. Afanasiev and A. V. Moiseev, Baltic Astron. 20, 363 (2011).

    ADS  Google Scholar 

  3. K. Aizu, Prog. Theor. Exp. Phys. 49, 1184 (1973).

    Article  ADS  Google Scholar 

  4. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).

    Article  ADS  Google Scholar 

  5. D. Belloni, M. R. Schreiber, A. F. Pala, B. T. Gansicke, M. Zorotovic, and C. V. Rodrigues, Mon. Not. R. Astron. Soc. 491, 5717 (2020).

    Article  ADS  Google Scholar 

  6. R. Bohlin, L. Colina, and D. Finley, Astron. J. 110, 1316 (1995).

    Article  ADS  Google Scholar 

  7. J. M. Bonnet-Bidaud, M. Mouchet, C. Busschaert, E. Falize, and C. Michaut, Astron. Astrophys. 579, A24 (2015).

    Article  ADS  Google Scholar 

  8. N. V. Borisov, M. M. Gabdeev, and V. L. Afanasiev, Astrophys. Bull. 71, 95 (2016a).

    Article  ADS  Google Scholar 

  9. N. V. Borisov, M. M. Gabdeev, V. V. Shimansky, N. A. Katysheva, A. I. Kolbin, S. Yu. Shugarov, and V. P. Goranskij, Astrophys. Bull. 71, 101 (2016b).

    Article  ADS  Google Scholar 

  10. G. P. Briggs, L. Ferrario, C. A. Tout, and D. T. Wickramasinghe, Mon. Not. R. Astron. Soc. 481, 3604 (2018).

    Article  ADS  Google Scholar 

  11. C. Busschaert, É. Falize, C. Michaut, J.-M. Bonnet-Bidaud, and M. Mouchet, Astron. Astrophys. 579, A25 (2015).

    Article  Google Scholar 

  12. L. Capitanio, R. Lallement, J. L. Vergely, M. Elyajouri, and A. Monreal-Ibero, Astron. Astrophys. 606, A65 (2017).

    Article  ADS  Google Scholar 

  13. W. Cash, Astrophys. J. 228, 939 (1979).

    Article  ADS  Google Scholar 

  14. G. Chanmugam and G. A. Dulk, Astrophys. J. 244, 569 (1981).

    Article  ADS  Google Scholar 

  15. M. Cropper, Space Sci. Rev. 54, 195 (1990).

    Article  ADS  Google Scholar 

  16. D. V. Denisenko and K. V. Sokolovsky, Astron. Lett. 37, 91 (2011).

    Article  ADS  Google Scholar 

  17. P. G. van Dokkum, Publ. Astron. Soc. Pacif. 113, 1420 (2001).

    Article  ADS  Google Scholar 

  18. P. A. Evans, A. P. Beardmore, K. L. Page, J. P. Osborne, P. T. O’Brien, R. Willingale, R. L. C. Starling, D. N. Burrows, et al., Mon. Not. R. Astron. Soc. 397, 1177 (2009).

    Article  ADS  Google Scholar 

  19. L. Ferrario, D. de Martino, and B. Gänsicke, Space Sci. Rev. 191, 111 (2015).

    Article  ADS  Google Scholar 

  20. B. P. Flannery, Mon. Not. R. Astron. Soc. 170, 325 (1975).

    Article  ADS  Google Scholar 

  21. D. Foight, T. Güver, and F. Özel, Astrophys. J. 826, 66 (2016).

    Article  ADS  Google Scholar 

  22. M. Fukugita, T. Ichikawa, J. E. Gunn, M. Doi, K. Shimasaku, and D. P. Schneider, Astron. J. 111, 1748 (1996).

    Article  ADS  Google Scholar 

  23. GAIA Collab., VizieR Online Data Catalog Gaia EDR3 (2020).

  24. G. M. Green, E. Schlafly, C. Zucker, J. S. Speagle, and D. Finkbeiner, Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  25. J.-M. Hameury, A. R. King, and J.-P. Lasota, Mon. Not. R. Astron. Soc. 218, 695 (1986).

    Article  ADS  Google Scholar 

  26. F. V. Hessman, B. T. Gänsicke, and J. A. Mattei, Astron. Astrophys. 361, 952 (2000).

    ADS  Google Scholar 

  27. K. Horne, Mon. Not. R. Astron. Soc. 213, 129 (1985).

    Article  ADS  Google Scholar 

  28. K. Horne, Publ. Astron. Soc. Pacif. 98, 609 (1986).

    Article  ADS  Google Scholar 

  29. C. Knigge, Mon. Not. R. Astron. Soc. 373, 484 (2006).

    Article  ADS  Google Scholar 

  30. C. Knigge, I. Baraffe, and J. Patterson, Astrophys. J. Suppl. Ser. 194, 28 (2011).

    Article  ADS  Google Scholar 

  31. A. I. Kolbin and N. V. Borisov, Astron. Lett. 46, 812 (2020).

    Article  ADS  Google Scholar 

  32. A. I. Kolbin, N. V. Borisov, N. A. Serebriakova, V. V. Shimansky, N. A. Katysheva, M. M. Gabdeev, and S. Yu. Shugarov, Mon. Not. R. Astron. Soc. 511, 20 (2022).

    Article  ADS  Google Scholar 

  33. A. I. Kolbin, N. V. Borisov, A. N. Burenkov, O. I. Spiridonova, I. F. Bikmaev, and M. V. Suslikov, Astron. Lett. 49, 129 (2023).

    Article  ADS  Google Scholar 

  34. E. J. Kotze, S. B. Potter, and V. A. McBride, Astron. Astrophys. 579, 77 (2015).

    Article  ADS  Google Scholar 

  35. E. J. Kotze, S. B. Potter, and V. A. McBride, Astron. Astrophys. 595, 47 (2016).

    Article  ADS  Google Scholar 

  36. R. Lallement, J.-L. Vergely, B. Valette, et al., Astron. Astrophys. 561, A91 (2014).

    Article  Google Scholar 

  37. J. Li, ASP Conf. Ser. 157, 235 (1999).

  38. Y. Liu, H.-C. Hwang, N. L. Zakamska, and J. R. Thorstensen, Mon. Not. R. Astron. Soc. 522, 2719 (2023).

    Article  ADS  Google Scholar 

  39. T. Marsh, Astrophys. Space Sci. 296, 403 (2005).

    Article  ADS  Google Scholar 

  40. F. Masci, R. Laher, B. Rusholme, et al., Publ. Astron. Soc. Pacif. 131, 995 (2019).

    Article  Google Scholar 

  41. M. McAllister, S. P. Littlefair, S. G. Parsons, V. S. Dhillon, T. R. Marsh, B. T. Gansicke, E. Breedt, C. Copperwheat, et al., Mon. Not. R. Astron. Soc. 486, 5535 (2019).

    Article  ADS  Google Scholar 

  42. J. B. Oke, Astron. J. 99, 1621 (1990).

    Article  ADS  Google Scholar 

  43. E. Pavlenko, K. Sokolovsky, A. Baklanov, K. Antonyuk, O. Antonyuk, and D. Denisenko, Astron. Telegram 3436, 1 (2011).

    ADS  Google Scholar 

  44. J. T. van der Plas, Astrophys. J. Suppl. Ser. 236, 16 (2018).

    Article  ADS  Google Scholar 

  45. W. H. Press, S. A. Teukolsky, W. T. Vetterling, et al., Numerical Recipes. The Art of Scientific Computing, 3rd ed. (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  46. H. Ritter and U. Kolb, Astron. Astrophys. 404, 301 (2003).

    Article  ADS  Google Scholar 

  47. A. Rodriguez, S. Kulkarni, T. Prince, P. Szkody, K. B. Burdge, I. Caiazzo, J. van Roestel, Z. P. Vanderbosch, et al., Astrophys. J. 945, 141 (2023).

    Article  ADS  Google Scholar 

  48. E. Romero-Colmenero, S. B. Potter, D. A. H. Buckley, P. E. Barrett, and S. Vrielmann, Mon. Not. R. Astron. Soc. 339, 685 (2003).

    Article  ADS  Google Scholar 

  49. Th. Rousseau, A. Fischer, K. Beuermann, and U. Woelk, Astron. Astrophys. 310, 526 (1996).

    ADS  Google Scholar 

  50. E. Schlafly and D. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  51. G. Schmidt, P. Szkody, L. Homer, P. S. Smith, B. Chen, A. Henden, J.-E. Solheim, M. A. Wolfe, and R. Greimel, Astrophys. J. 620, 422 (2005).

    Article  ADS  Google Scholar 

  52. A. D. Schwope, K. H. Mantel, and K. Horne, Astron. Astrophys. 319, 894 (1997).

    ADS  Google Scholar 

  53. A. D. Schwope, F. Mackebrandt, B. D. Thinius, C. Littlefield, P. Garnavich, A. Oksanen, and T. Granzer, Astron. Nachr. 336, 115 (2015).

    Article  ADS  Google Scholar 

  54. F. Sirotkin and W.-T. Kim, Astrophys. J. 698, 715 (2009).

    Article  ADS  Google Scholar 

  55. D. Steeghs, Mon. Not. R. Astron. Soc. 344, 448 (2003).

    Article  ADS  Google Scholar 

  56. S. Tapia, Astrophys. J. Lett. 212, L125 (1977).

    Article  ADS  Google Scholar 

  57. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  58. J. Wilms, A. Allen, and R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

  59. H. Worpel and A. D. Schwope, Astron. Astrophys. 583, A130 (2015).

    Article  ADS  Google Scholar 

  60. M. Zorotovic, M. R. Schreiber, and B. T. Gänsicke, Astron. Astrophys. 536, 42 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to TÜBİTAK, the Space Research Institute of the Russian Academy of Sciences, the Kazan Federal University, and the Academy of Sciences of Tatarstan for their partial support in using RTT-150 (the Russian–Turkish 1.5-m telescope in Antalya).

Funding

This study was supported by the Russian Science Foundation (project no. 22-72-10064). The observations with the telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences are supported by the Ministry of Science and Higher Education of the Russian Federation. The instrumentation is updated within the ’’Science and universities’’ National Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Kochkina or A. I. Kolbin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochkina, V.Y., Kolbin, A.I., Borisov, N.V. et al. Nature of the Eclipsing Polar 1RXS J184542.4\(+\)483134. Astron. Lett. 49, 706–721 (2023). https://doi.org/10.1134/S1063773723110051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110051

Keywords:

Navigation