Skip to main content
Log in

X-ray Properties of the Luminous Quasar PG 1634+706 at \(z=1.337\) from SRG and XMM-Newton Data

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

In the fall of 2019, during the in-flight calibration phase of the SRG observatory, the onboard eROSITA and Mikhail Pavlinsky ART-XC telescopes carried out a series of observations of PG 1634+706 — one of the most luminous (an X-ray luminosity \({\sim}10^{46}\) erg s\({}^{-1}\)) quasars in the Universe at \(z<2\). Approximately at the same dates this quasar was also observed by the XMM-Newton observatory. Although the object had already been repeatedly studied in X-rays previously, its new observations allowed its energy spectrum to be measured more accurately in the wide range 1–30 keV (in the quasar rest frame). Its spectrum can be described by a two-component model that consists of a power-law continuum with a slope \(\Gamma\approx 1.9\) and a broadened iron emission line at an energy of about 6.4 keV. The X-ray variability of the quasar was also investigated. On time scales of the order of several hours (here and below, in the source rest frame) the X-ray luminosity does not exhibit a statistically significant variability. However, it changed noticeably from observation to observation in the fall of 2019, having increased approximately by a factor of 1.5 in 25 days. A comparison of the new SRG and XMM-Newton measurements with the previous measurements of other X-ray observatories has shown that in the entire 17-year history of observations of the quasar PG 1634+706 its X-ray luminosity has varied by no more than a factor of 2.5, while the variations on time scales of several weeks and several years are comparable in amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. In the cited paper a luminosity estimate at a wavelength of 2500 Å, \(\nu L_{\nu,2500}\sim 3\times 10^{47}\) erg s\({}^{-1}\), is given, while the corresponding bolometric correction for quasars is estimated to be \({\sim}3\) (Kravchuk et al. 2013).

  2. erosita.mpe.mpg.de/edr/DataAnalysis/evtool_doc

  3. www.cosmos.esa.int/web/xmm-newton/sas-thread-epic-filterbackground

  4. https://heasarc.gsfc.nasa.gov/xanadu/xspec

REFERENCES

  1. T. T. Ananna, A. K. Weigel, B. Trakhtenbrot, M. J. Koss, C. M. Urry, C. Ricci, et al., Astrophys. J. Suppl. Ser. 261, 9 (2022).

    Article  ADS  Google Scholar 

  2. E. Anders and N. Grevesse 53, 197 (1989).

  3. K. A. Arnaud, in Astronomical Data Analysis Software and Systems V, Ed. by G. H. Jacoby and J. Barnes, ASP Conf. Ser. 101, 17 (1996).

    Google Scholar 

  4. R. Boissay, C. Ricci, and S. Paltani, Astron. Astrophys. 588, A70 (2016).

    Article  ADS  Google Scholar 

  5. M. Brightman, J. D. Silverman, V. Mainieri, Y. Ueda, M. Schramm, K. Matsuoka, et al., Mon. Not. R. Astron. Soc. 433, 2485 (2013).

    Article  ADS  Google Scholar 

  6. M. Elvis, F. J. Lockman, and B. J. Wilkes, Astron. J. 97, 777 (1989).

    Article  ADS  Google Scholar 

  7. M. Elvis, B. J. Wilkes, J. C. McDowell, R. F. Green, J. Bechtold, S. P. Willner, et al., Astrophys. J. Suppl. Ser. 95, 1 (1994).

    Article  ADS  Google Scholar 

  8. I. M. George and A. C. Fabian, Mon. Not. R. Astron. Soc. 249, 352 (1991).

    Article  ADS  Google Scholar 

  9. I. M. George, T. J. Turner, T. Yaqoob, H. Netzer, A. Laor, R. F. Mushotzky, et al., Astrophys. J. 531, 52 (2000).

    Article  ADS  Google Scholar 

  10. R. F. Green, M. Schmidt, and J. Liebert, Astrophys. J. Suppl. Ser. 61, 305 (1986).

    Article  ADS  Google Scholar 

  11. M. Guainazzi and S. Bianchi, Mon. Not. R. Astron. Soc. 374, 1290 (2007).

    Article  ADS  Google Scholar 

  12. S. A. R. Haro-Corzo, L. Binette, Y. Krongold, E. Benitez, A. Humphrey, F. Nicastro, et al., Astrophys. J. 662, 145 (2007).

    Article  ADS  Google Scholar 

  13. F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, et al., Astron. Astrophys. 365, L1 (2001).

    Article  ADS  Google Scholar 

  14. E. Jiménez-Bailón, E. Piconcelli, M. Guainazzi, N. Schartel, P. M. Rodríguez-Pascual, and M. Santos-Lleó, Astron. Astrophys. 435, 449 (2005).

    Article  ADS  Google Scholar 

  15. C. Jin, M. Ward, C. Done, and J. Gelbord, Mon. Not. R. Astron. Soc. 420, 1825 (2012).

    Article  ADS  Google Scholar 

  16. B. C. Kelly, J. Bechtold, J. R. Trump, M. Vestergaard, and A. Siemiginowska, Astrophys. J. Suppl. Ser. 176, 355 (2008).

    Article  ADS  Google Scholar 

  17. G. A. Khorunzhev, S. Y. Sazonov, R. A. Burenin, and A. Y. Tkachenko, Astron. Lett. 38, 475 (2012).

    Article  ADS  Google Scholar 

  18. C. M. Krawczyk, G. T. Richards, S. S. Mehta, M. S. Vogeley, S. C. Gallagher, K. M. Leighly, et al., Astrophys. J. Suppl. Ser. 206, 4 (2013).

    Article  ADS  Google Scholar 

  19. B. W. Lyke, A. N. Higley, J. N. McLane, D. P. Schurhammer, A. D. Myers, A. J. Ross, et al., Astrophys. J. Suppl. Ser. 250, 8 (2020).

    Article  ADS  Google Scholar 

  20. P. Magdziarz and A. A. Zdziarski, Mon. Not. R. Astron. Soc. 273, 837 (1995).

    Article  ADS  Google Scholar 

  21. A. Malizia, S. Sazonov, L. Bassani, E. Pian, V. Beckmann, M. Molina, et al., 90, 101545 (2020).

  22. J. M. Miller, Ann. Rev. Astron. Astrophys. 45, 441 (2007).

    Article  ADS  Google Scholar 

  23. K. Nandra, A. C. Fabian, W. N. Brandt, H. Kunieda, M. Matsuoka, T. Mihara, et al., Mon. Not. R. Astron. Soc. 276, 1 (1995).

    ADS  Google Scholar 

  24. S. Nayakshin, D. Kazanas, and T. R. Kallman, Astrophys. J. 537, 833 (2000).

    Article  ADS  Google Scholar 

  25. M. Neeleman, J. X. Prochaska, J. Ribaudo, N. Lehner, J. C. Howk, M. Rafelski, et al., Astrophys. J. 818, 113 (2016).

    Article  ADS  Google Scholar 

  26. K. L. Page, J. N. Reeves, P. T. O’Brien, M. J. L. Turner, and D. M. Worrall, Mon. Not. R. Astron. Soc. 353, 133 (2004).

    Article  ADS  Google Scholar 

  27. T. Park, D. A. van Dyk, and A. Siemiginowska, Astrophys. J. 688, 807 (2008).

    Article  ADS  Google Scholar 

  28. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  29. E. Piconcelli, E. Jimenez-Bailón, M. Guainazzi, N. Schartel, P. M. Rodríguez-Pascual, and M. Santos-Lleó, Astron. Astrophys. 432, 15 (2005).

    Article  ADS  Google Scholar 

  30. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  31. S. A. Prokhorenko and S. Y. Sazonov, Astron. Lett. 47, 515 (2021).

    Article  ADS  Google Scholar 

  32. G. T. Richards, M. Lacy, L. J. Storrie-Lombardi, P. B. Hall, S. C. Gallagher, D. C. Hines, et al., Astrophys. J. Suppl. Ser. 166, 470 (2006).

    Article  ADS  Google Scholar 

  33. C. Ricci, B. Trakhtenbrot, M. J. Koss, Y. Ueda, I. Del Vecchio, E. Treister, et al., Astrophys. J. Suppl. Ser. 233, 17 (2017).

    Article  ADS  Google Scholar 

  34. A. de Rosa, F. Panessa, L. Bassani, A. Bazzano, A. Bird, R. Landi, et al., Mon. Not. R. Astron. Soc. 420, 2087 (2012).

    Article  ADS  Google Scholar 

  35. R. R. Ross and A. C. Fabian, Mon. Not. R. Astron. Soc. 358, 211 (2005).

    Article  ADS  Google Scholar 

  36. S. Y. Sazonov, J. P. Ostriker, and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 347, 144 (2004).

    Article  ADS  Google Scholar 

  37. S. Sazonov, S. P. Willner, A. D. Goulding, R. C. Hickox, V. Gorjian, M. W. Werner, et al., Astrophys. J. 757, 181 (2012).

    Article  ADS  Google Scholar 

  38. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  39. Z. Shang, M. S. Brotherton, B. J. Wills, D. Wills, S. L. Cales, D. A. Dale, et al., Astrophys. J. Suppl. Ser. 196, 2 (2011).

    Article  ADS  Google Scholar 

  40. O. Shemmer, W. N. Brandt, H. Netzer, R. Maiolino, and S. Kaspi, Astrophys. J. 682, 81 (2008).

    Article  ADS  Google Scholar 

  41. O. Shemmer, W. N. Brandt, M. Paolillo, S. Kaspi, C. Vignali, M. S. Stein, et al., Astrophys. J. 783, 116 (2014).

    Article  ADS  Google Scholar 

  42. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  43. H. Tananbaum, Y. Avni, R. F. Green, M. Schmidt, and G. Zamorani, Astrophys. J. 305, 57 (1986).

    Article  ADS  Google Scholar 

  44. B. Trakhtenbrot, C. Ricci, M. J. Koss, K. Schawinski, R. Mushotzky, Y. Ueda, et al., Mon. Not. R. Astron. Soc. 470, 800 (2017).

    Article  ADS  Google Scholar 

  45. T. J. Turner, I. M. George, K. Nandra, and D. Turcan, Astrophys. J. 524, 667 (1999).

    Article  ADS  Google Scholar 

  46. S. Vaughan, R. Edelson, R. S. Warwick, and P. Uttley, Mon. Not. R. Astron. Soc. 345, 1271 (2003).

    Article  ADS  Google Scholar 

  47. J. Wilms, A. Allen, and R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

  48. R. V. Vasudevan and A. C. Fabian, Mon. Not. R. Astron. Soc. 381, 1235 (2007).

    Article  ADS  Google Scholar 

  49. J. Wilms, A. Allen, and R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study we used data from the ART-XC and eROSITA telescopes onboard the SRG observatory. The SRG observatory was designed by the Lavochkin Association (enters into the Roskosmos State Corporation) with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) within the framework of the Russian Federal Space Program on the order of the Russian Academy of Sciences. The eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The ART-XC team thanks the Roskosmos State Corporation, the Russian Academy of Sciences, and the Rosatom State Corporation for supporting the design and production of the ART-XC telescope and the Lavochkin Association and partners for the production and work with the spacecraft and the Navigator platform. The eROSITA data used in this work were processed with the eSASS software developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium.

Funding

This study was supported by RSF grants nos. 21-12-00343 and 19-12-00396 with regard to the eROSITA and ART-XC data processing, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Uskov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uskov, G.S., Sazonov, S.Y., Gilfanov, M.R. et al. X-ray Properties of the Luminous Quasar PG 1634+706 at \(z=1.337\) from SRG and XMM-Newton Data. Astron. Lett. 49, 621–638 (2023). https://doi.org/10.1134/S1063773723110099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110099

Keywords:

Navigation