Skip to main content
Log in

SRGz: Classification of eROSITA Point X-ray Sources in the 1\({\%}\)DESI Region and Calibration of Photometric Redshifts*

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We consider the population of point X-ray sources from the two-year SRG/eROSITA survey in the 1\(\%\) DESI spectroscopic survey region in the eastern Galactic hemisphere (eROSITA–1\(\%\)DESI–East). The data under consideration combine a large survey area (compared to the medium-format Stripe82X and XMM-XXL X-ray surveys) and a record high completeness of spectroscopy for the optical counterparts of X-ray sources. We compare the results of the photometric (SRGz) and spectroscopic/astrometric (DESI EDR, SDSS, HELP, GAIA) measurements of the classes and redshifts of objects in three X-ray-flux-limited eROSITA–1\(\%\)DESI–East samples: \(F_{X,0.5-2}\geqslant 4\times 10^{-14}\) erg s\({}^{-1}\) cm\({}^{-2}\) (bright), \(F_{X,0.5-2}=(1.5{-}4)\times 10^{-14}\) erg s\({}^{-1}\) cm\({}^{-2}\) (medium), and \(F_{X,0.5-2}=(0.6{-}1.5)\times 10^{-14}\) erg s\({}^{-1}\) cm\({}^{-2}\) (faint) with a total area of 91.4, 91.4, and 16.62 deg\({}^{2}\), respectively. We propose a new method of postprocessing the probabilistic photo-z predictions based on a two-temperature correction of the probability density function \(PDF(z)\). This approach allows the calibration of the probabilistic predictions and confidence intervals of the photometric redshifts for eROSITA X-ray sources obtained by SRGz to be improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. The Russian eROSITA consortium is responsible for the analysis of the eROSITA data in the eastern half of the sky (in Galactic coordinates).

REFERENCES

  1. A. G. Adame, J. Aguilar, S. Ahlen, S. Alam, G. Aldering, et al. (DESI Collab.), arXiv: 2306.06308 (2023).

  2. A. Almeida, S. F. Anderson, M. Argudo-Fernández, C. Badenes, K. Barger, J. K. Barrera-Ballesteros, et al., Astrophys. J. Suppl. Ser. 267, 44 (2023).

    Article  ADS  Google Scholar 

  3. T. T. Ananna, M. Salvato, S. LaMassa, C. M. Urry, N. Cappelluti, C. Cardamone, et al., Astrophys. J. 850, 66 (2017).

    Article  ADS  Google Scholar 

  4. L. Breiman, Mach. Learning 45, 5 (2001).

    Article  Google Scholar 

  5. M. Brescia, M. Salvato, S. Cavuoti, T. T. Ananna, G. Riccio, S. M. LaMassa, et al., Mon. Not. R. Astron. Soc. 489, 663 (2019).

    Article  ADS  Google Scholar 

  6. R. A. Burenin, Astron. Lett. 48, 153 (2022).

    Article  ADS  Google Scholar 

  7. M. Carrasco Kind and R. J. Brunner, Mon. Not. R. Astron. Soc. 432, 1483 (2013).

    Article  ADS  Google Scholar 

  8. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arXiv: 1612.05560 (2016).

  9. E. Chaussidon, C. Yeche, N. Palanque-Delabrouille, D. M. Alexander, J. Yang, S. Ahlen, et al., Astrophys. J. 944, 107 (2023).

    Article  ADS  Google Scholar 

  10. A. P. Dawid, J. R. Stat. Soc., Ser. A 147, 278 (1984).

    Article  ADS  Google Scholar 

  11. G. Desprez, S. Paltani, J. Coupon, I. Almosallam, A. Alvarez-Ayllon, et al. (Euclid Collab.), Astron. Astrophys. 644, A31 (2020).

    Google Scholar 

  12. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  13. J. Dinardo, N. Fortin, and T. Lemieux, Econometrica 64, 1001 (1996).

    Article  Google Scholar 

  14. A. D’Isanto and K. L. Polsterer, Astron. Astrophys. 609, A111 (2018).

    Article  ADS  Google Scholar 

  15. Z. Gomes, M. J. Jarvis, I. A. Almosallam, and S. J. Roberts, Mon. Not. R. Astron. Soc. 475, 331 (2018).

    Article  ADS  Google Scholar 

  16. Y. Lin and Y. Jeon, J. Am. Stat. Assoc. 101, 578 (2006).

    Article  Google Scholar 

  17. B. W. Lyke, A. N. Higley, J. N. McLane, D. P. Schurhammer, A. D. Myers, A. J. Ross, et al., Astrophys. J. Suppl. Ser. 250, 8 (2020).

    Article  ADS  Google Scholar 

  18. A. Mainzer, J. Bauer, T. Grav, J. Masiero, R. M. Cutri, J. Dailey, et al., Astrophys. J. 731, 53 (2011).

    Article  ADS  Google Scholar 

  19. P. S. Medvedev, M. R. Gilfanov, S. Y. Sazonov, R. A. Sunyaev, and G. A. Khorunzhev, Astron. Lett. 48, 735 (2022).

    Article  ADS  Google Scholar 

  20. N. Meinshausen, J. Mach. Learn. Res. 7, 983 (2006).

    MathSciNet  Google Scholar 

  21. A. V. Meshcheryakov, V. V. Glazkova, S. V. Gerasimov, and I. V. Mashechkin, Astron. Lett. 44, 735 (2018).

    Article  ADS  Google Scholar 

  22. A. V. Meshcheryakov, V. D. Borisov, G. A. Khorunzhev, P. A. Medvedev, M. R. Gilfanov, M. I. Belvedersky, S. Yu. Sazonov, R. A. Burenin, R. A. Krivonos, I. F. Bikmaev, I. M. Khamitov, S. V. Gerasimov, I. V. Mashechkin, and R. A. Sunyaev, Astron. Lett. 49, 359 (2023).

    Article  ADS  Google Scholar 

  23. J. A. Newman and D. Gruen, Ann. Rev. Astron. Astrophys. 60, 363 (2022).

    Article  ADS  Google Scholar 

  24. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  25. J. Platt, in Advances in Large-Margin Classifiers, Ed. by A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans (MIT Press, Boston, 2000), p. 10.

    Google Scholar 

  26. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  27. A. Sadat Mozafari, H. Siqueira Gomes, W. Leao, S. Janny, and C. Gagn’e, arXiv: 1810.11586 (2018).

  28. S. J. Schmidt, A. I. Malz, J. Y. H. Soo, I. A. Almosallam, M. Brescia, S. Cavuoti, et al., Mon. Not. R. Astron. Soc. 499, 1587 (2020).

    ADS  Google Scholar 

  29. R. Shirley, K. Duncan, M. C. Campos Varillas, P. D. Hurley, K. Malek, Y. Roehlly, et al., Mon. Not. R. Astron. Soc. 507, 129 (2021).

    Article  ADS  Google Scholar 

  30. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  31. C. Tang, D. Garreau, and U. von Luxburg, in Advances in Neural Information Processing Systems, Proceedings of the Conference, Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran Assoc., 2018), Vol. 31.

  32. C. Wang, arXiv: 2308.01222 (2023).

  33. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  34. Q. Wu and Y. Shen, Astrophys. J. Suppl. Ser. 263, 42 (2022).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is based on observations with the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by the Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG/eROSITA X-ray telescope was built by a consortium of German institutes led by the Max-Planck-Institut für extraterrestrische Physik (MPE), and supported by DLR. The SRG spacecraft was designed, built, launched and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this paper were processed with the eSASS software developed by the German eROSITA consortium and the software developed by the Russian SRG/eROSITA consortium. The SRGz system was created at the High-Energy Astrophysics Department of the Space Research Institute of the Russian Academy of Sciences by the working group on the search for and identification of X-ray sources and the production of a catalog based on SRG/eROSITA data.

Funding

This work was supported by RSF grant no. 21-12-00343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meshcheryakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshcheryakov, A.V., Khorunzhev, G.A., Voskresenskaya, S.A. et al. SRGz: Classification of eROSITA Point X-ray Sources in the 1\({\%}\)DESI Region and Calibration of Photometric Redshifts*. Astron. Lett. 49, 646–661 (2023). https://doi.org/10.1134/S1063773723110129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110129

Keywords:

Navigation