Skip to main content
Log in

Expansion of the Soft X-ray Source and ‘‘Magnetic Detonation’’ in Solar Flares

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The detection of radio emission from solar flares at frequencies below \({\sim}2\) GHz allows the upper limits for the characteristic size of the soft X-ray (SXR) source \(L(t)\) to be estimated under the assumption that the density \(n(t)\) is determined by the plasma frequency \(\nu_{p}\). If the SXR source with a higher density is inside the radio source, then the size of the SXR source will be \(L(t)<(EM(t)/2n(t)^{2})^{1/3}\), where \(EM(t)\) is the emission measure. For three flares (C7.2 on December 22, 2009, M2.9 on July 6, 2012, and X1.1 on July 6, 2012) we calculate the expansion speeds of the SXR source \(V(t)\sim dL(t)/dt\), which are compared with the estimates of the sound speed and the Alfvén speed. By ‘‘magnetic detonation’’ we mean the process of the propagation of magnetic reconnection with a supersonic speed in eruptive flares. Magnetic detonation and the succeeding coronal mass ejection (CME) were realized in the December 22, 2009 C7.2 and July 6, 2012 X1.1 flares, in which supersonic and super-Alfvén speeds were reached if the density of the SXR source was lower than \(2.1\times 10^{9}\) and \(7.4\times 10^{8}\) cm\({}^{-3}\) (\(\nu_{p}<410\) and \({<}245\) MHz), respectively. There were no magnetic detonation and CME in the July 6, 2012 M2.9 flare, whose radio emission frequencies were only above 1415 MHz (\(n>2.5\times 10^{10}\) cm\({}^{-3}\)). For magnetic detonation in the July 6, 2012 X1.1 flare we have estimated the magnetic field strength, the reconnection electric field strength, the plasma flow, and the CME mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Ackermann, M. Ajello, A. Albert, A. Allafort, L. Baldini, G. Barbiellini, D. Bastieri, K. Bechtol, et al., Astrophys. J. 787, 15 (2014). https://doi.org/10.1088/0004-637X/787/1/15

    Article  ADS  Google Scholar 

  2. A. Altyntsev, N. Meshalkina, I. Myshyakov, V. Pal’shin, and G. Fleishman, Solar Phys. 292, 137 (2017).

    Article  ADS  Google Scholar 

  3. S. K. Antiochos, C. R. Devore, and J. A. Klimchuk, Astrophys. J. 510, 485 (1999).

    Article  ADS  Google Scholar 

  4. U. Anzer and G. W. Pneuman, Solar Phys. 79, 129 (1982).

    Article  ADS  Google Scholar 

  5. M. J. Aschwanden, Space Sci. Rev. 124, 361 (2006).

    Article  ADS  Google Scholar 

  6. M. J. Aschwanden, Physics of the Solar Corona: An Introduction with Problems and Solutions (Springer, Berlin, 2009).

    Google Scholar 

  7. M. J. Aschwanden, arXiv: 2112.07759v1 (2021). https://doi.org/10.48550/arXiv.2112.07759

  8. G. Aulanier, P. Démoulin, C. J. Schrijver, M. Janvier, E. Pariat, and B. Schmieder, Astron. Astrophys. 549, A66 (2013). https://doi.org/10.1051/0004-6361/201220406

    Article  ADS  Google Scholar 

  9. L. I. Dorman, Adv. Space Res. 64, 2418 (2019). https://doi.org/10.1016/j.asr.2019.06.031

    Article  ADS  Google Scholar 

  10. G. D. Fleishman, Science (Washington, DC, U. S.) 367, 278 (2020).

    Article  ADS  Google Scholar 

  11. R. J. French, Ph. G. Judge, S. A. Matthews, and L. van Driel-Gesztelyi, Astrophys. J. Lett. 887, L34 (2019).

    Article  ADS  Google Scholar 

  12. A. A. Galeev, R. Rosner, S. Serio, and G. S. Vaiana, Astrophys. J. 243, 301 (1981). http://doi.org/10.1086/158598

    Article  ADS  Google Scholar 

  13. N. Gopalswamy, H. Xie, S. Akiyama, S. Yashiro, I. G. Usoskin, and J. M. Davila, Astrophys. J. 765, L30 (2013). https://doi.org/10.1088/2041-8205/765/2/L30

    Article  ADS  Google Scholar 

  14. N. Gopalswamy, S. Yashiro, N. Thakur, P. Makela, H. Xie, and S. Akiyama, Astrophys. J. 833, 216 (2016). https://doi.org/10.3847/1538-4357/833/2/216

    Article  ADS  Google Scholar 

  15. J. T. Gosling, J. Geophys. Res. 98, 18937 (1993). https://doi.org/10.1029/93JA01896

    Article  ADS  Google Scholar 

  16. I. Yu. Grigorieva and A. B. Struminsky, Geomagn. Aeron. 61, 1263 (2021). https://doi.org/10.1134/S0016793221080090

    Article  ADS  Google Scholar 

  17. I. Yu. Grigorieva, A. B. Struminsky, and A. N. Shakhovskaya, in Proceedings of the 25th Conference on Solar and Solar-Earth Physics 2021, Ed. by Yu. A. Nagovitsyn and A. V. Stepanov (2021).

  18. I. Yu. Grigorieva and A. B. Struminsky, Astron. Rep. 66, 481 (2022). https://doi.org/10.1134/S106377292206004X

    Article  ADS  Google Scholar 

  19. J. Heyvaerts, E. R. Priest, and D. M. Rust, Astrophys. J. 216, 123 (1977).

    Article  ADS  Google Scholar 

  20. T. A. Howard and V. J. Pizzo, Astrophys. J. 824, 92 (2016). https://doi.org/10.3847/0004-637X/824/2/9

    Article  ADS  Google Scholar 

  21. T. A. Howard, C. E. De Forest, U. G. Schneck, and C. R. Alden, Astrophys. J. 834, 86 (2017). https://doi.org/10.3847/1538-4357/834/1/8

    Article  ADS  Google Scholar 

  22. H. S. Hudson, Astrophys. J. 531, L75 (2000).

    Article  ADS  PubMed  Google Scholar 

  23. H. S. Hudson, P. J. A. Simoes, L. Fletcher, L. A. Hayes, and I. G. Hannah, Mon. Not. R. Astron. Soc. 501, 1273 (2021).

    Article  ADS  Google Scholar 

  24. V. G. Ledenev, Sov. Astron. 24, 67 (1980).

    ADS  Google Scholar 

  25. A. L. Lysenko, D. D. Frederiks, G. D. Fleishman, R. L. Aptekar, A. T. Altyntsev, S. V. Golenetskii, D. S. Svinkin, M. V. Ulanov, A. E. Tsvetkova, and A. V. Ridnaia, Phys. Usp. 63, 818 (2020). https://doi.org/10.3367/UFNe.2019.06.038757

    Article  ADS  Google Scholar 

  26. W. M. Neupert, Astrophys. J. 153, L59 (1968).

    Article  ADS  Google Scholar 

  27. J. W. Reep and K. J. Knizhnik, Astrophys. J. 874, 157 (2019). https://doi.org/10.3847/1538-4357/a

    Article  ADS  Google Scholar 

  28. A. B. Struminskii, I. Yu. Grigor’eva, Yu. I. Logachev, and A. M. Sadovski, Geomagn. Aeron. 61, 781 (2021). https://doi.org/10.1134/S0016793221050133

    Article  ADS  Google Scholar 

  29. A. B. Struminskii, I. Yu. Grigor’eva, and A. M. Sadovskii, in Proceedings of the 26th Conference on Solar and Solar-Earth Physics 2022, Ed. by Yu. A. Nagovitsyn and A. V. Stepanov (GAO RAN, 2022).

  30. A. Struminsky and W. Gan, J. Phys.: Conf. Ser. 632, 012081 (2015).

  31. A. B. Struminsky and I. Yu. Grigoryeva, Geomagn. Aeron. 63, 1045 (2022). doi 10.1134/S0016793222080205

    Article  ADS  Google Scholar 

  32. A. B. Struminsky, Yu. I. Logachev, I. Yu. Grigorieva, and A. M. Sadovski, Geomagn. Aeron. 60, 1057 (2020). https://doi.org/10.1134/S001679322008023X

    Article  ADS  Google Scholar 

  33. P. A. Sturrock, P. Kaufman, R. L. Moore, and D. F. Smith, Solar Phys. 94, 341 (1984). https://doi.org/10.1007/BF00151322

    Article  ADS  Google Scholar 

  34. Z. Švestka, Solar Phys. 160, 53 (1995).

    Article  ADS  Google Scholar 

  35. Z. Švestka, Space Sci. Rev. 95, 135 (2001).

    Article  ADS  Google Scholar 

  36. Z. Švestka and E. W. Cliver, in Proceedings of the IAU Colloquium No. 123, Lect. Notes Phys. 399, 1 (1992).

  37. N. Vasantharaju, F. Zuccarello, F. Ferrente, and S. L. Guglielmino, Astrophys. J. 950, 183 (2023). https://doi.org/10.3847/1538-4357/accfff

    Article  ADS  Google Scholar 

  38. A. L. Velikovich and M. A. Liberman, Physics of Shock Waves in Gases and Plasmas, Ed. by Ya. B. Zel’dovich (Springer, Berlin, 1986; Nauka, Moscow, 1987).

  39. B. Vršnak and E. W. Cliver, Solar Phys. 253, 215 (2008). http://doi.org/10.1007/s11207-008-9241-5

    Article  ADS  Google Scholar 

  40. J. Wang, P. J. A. Simoes, and L. Fletcher, Astrophys. J. 859, 25 (2018).

    Article  ADS  Google Scholar 

  41. Ya. B. Zel’dovich and A. S. Kompaneets, Theory of Detonation (Gos. Izdat. Nauch.-Tekh. Liter., Moscow, 1955; Academic, New York, 1960).

Download references

ACKNOWLEDGMENTS

We thank the participants of the ground-based and space experiments whose data are in open access and were used in our paper (GOES, RSTN, and SOHO LASCO).

Funding

This work was supported by the subsidies on the themes ‘‘Plasma’’ (A.B. Struminsky and A.M. Sadovski) at the Space Research Institute of the Russian Academy of Sciences and ‘‘Multiwavelength Active Sun’’ (I.Yu. Grigorieva) at the Pulkovo Astronomical Observatory of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Struminsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struminsky, A.B., Sadovski, A.M. & Grigorieva, I.Y. Expansion of the Soft X-ray Source and ‘‘Magnetic Detonation’’ in Solar Flares. Astron. Lett. 49, 731–743 (2023). https://doi.org/10.1134/S1063773723110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110087

Keywords:

Navigation