Skip to main content
Log in

Investigation of the Disk of the Be Star in the High-Mass X-ray Binary IGR J21343+4738

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our long-term photometric and spectroscopic monitoring with the 1.5-m telescope RTT-150 for the optical counterpart of the high-mass X-ray binary IGR J21343+4738 discovered in 2002 by the INTEGRAL space X-ray observatory. The X-ray source was also repeatedly detected by the telescopes of the SRG observatory during the all-sky surveys in the period 2019–2021. We have investigated the spectroscopic and photometric variabilities of the optical counterpart, a Be star, caused by physical processes in the equatorial disk. The evolution of the equatorial disk parameters over a long time interval of 16 years has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. https://tug.tubitak.gov.tr/tr/icerik/tfosc-tug-faint-object-spectrograph-and-camera

REFERENCES

  1. R. Ahumada, C. A. Prieto, A. Almeida, F. Anders, S. F. Anderson, B. H. Andrews, B. Anguiano, et al., Astrophys. J. Suppl. Ser. 249, 3 (2020).

    Article  ADS  Google Scholar 

  2. I. F. Bikmaev, R. A. Burenin, M. G. Revnivtsev, S. Yu. Sazonov, R. A. Sunyaev, M. N. Pavlinsky, and N. A. Sakhibullin, Astron. Lett. 34, 653 (2008).

    Article  ADS  Google Scholar 

  3. A. J. Bird, A. Malizia, A. Bazzano, E. J. Barlow, L. Bassani, A. B. Hill, G. Bélanged, F. Capitanio, et al., Astrophys. J. Suppl. Ser. 170, 175 (2007).

    Article  ADS  Google Scholar 

  4. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewellng, M. E. Huber, C. Z. Waters, L. Denneau, P. W. Draper, et al., arXiv: 1612.05560 (2016).

  5. R. H. D. Corbet, Astron. Astrophys. 141, 91 (1984).

    ADS  Google Scholar 

  6. G. A. Galazutdinov, Astrophys. Bull. 77, 519 (2022).

    Article  ADS  Google Scholar 

  7. A. S. Gorban, S. V. Molkov, A. A. Lutovinov, and A. N. Semena, Astron. Lett. 48, 798 (2022).

    Article  ADS  Google Scholar 

  8. R. W. Hanuschik, Astron. Astrophys. 308, 170 (1996).

    ADS  Google Scholar 

  9. S.-S. Huang, Astrophys. J. 171, 549 (1972).

    Article  ADS  Google Scholar 

  10. F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, and M. Guainazzi, et al., Astron. Astrophys. 365, L1 (2001).

    Article  ADS  Google Scholar 

  11. T. Jayasinghe, K. Z. Stanek, C. S. Kochanek, B. J. Shappee, T. W.-S. Holoien, T. A. Thompson, J. L. Prieto, S. Dong, et al., Mon. Not. R. Astron. Soc. 485, 961 (2019).

    Article  ADS  Google Scholar 

  12. A. Kostov and T. Bonev, arXiv: 1706.06147 (2017).

  13. R. Krivonos, M. Revnivtsev, A. Lutovinov, S. Sazonov, E. Churazov, and R. Sunyaev, Astron. Astrophys. 475, 775 (2007).

    Article  ADS  Google Scholar 

  14. A. Lutovinov, S. Tsygankov, I. Mereminsky, S. Molkov, A. Semena, V. Arefiev, I. Bikmaev, and A. Djupvik, Astron. Astrophys. 661, A28 (2022).

    Article  Google Scholar 

  15. F. J. Masci, R. R. Laher, B. Rusholme, D. L. Shupe, S. Groom, J. Surace, E. Jackson, S. Monkewitz, et al., Publ. Astron. Soc. Pacif. 131, 018003 (2019).

  16. E. A. Nikolaeva, I. F. Bikmaev, E. S. Islentieva, and V. V. Shimansky, in Proceedings of the MOBSTER-1 Virtual Conference on Stellar Variability as a Probe of Magnetic Fields in Massive Stars (2021), p. 25. https://doi.org/10.5281/zenodo.5525551

  17. A. T. Okazaki, M. R. Bate, G. I. Ogilvie, and J. E. Pringle, Mon. Not. R. Astron. Soc. 337, 967 (2002).

    Article  ADS  Google Scholar 

  18. M. Pavlinsky, A. Tkachenko, M. Levin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  19. S. N. Pike and F. A. Harrison, Astronom. Telegram, No. 14291, 1 (2020).

  20. J. M. Porter, Mon. Not. R. Astron. Soc. 280, L31 (1996).

    Article  ADS  Google Scholar 

  21. K. Postnov, L. Oskinova, and J. Torrejon, Mon. Not. R. Astron. Soc. 465, L119 (2017).

    ADS  Google Scholar 

  22. P. Reig and A. Zezas, Astron. Astrophys. 561, A137 (2014a).

    Article  ADS  Google Scholar 

  23. P. Reig and A. Zezas, Mon. Not. R. Astron. Soc. 442, 472 (2014b).

    Article  ADS  Google Scholar 

  24. P. Reig, A. Nersesian, A. Zezas, L. Gkouvelis, and M. J. Coe, Astron. Astrophys. 590, A122 (2016).

    Article  ADS  Google Scholar 

  25. T. Rivinius, A. C. Carciofix, and C. Martayan, Astron. Astrophys. Rev. 21, 69 (2013).

    Article  ADS  Google Scholar 

  26. S. Sazonov, M. Revnivtsev, R. Burenin, E. Churazov, R. Sunyaev, W. R. Forman, and S. S. Murray, Astron. Astrophys. 487, 509 (2008).

    Article  ADS  Google Scholar 

  27. A. Semena, A. Lutovinov, I. Mereminskiy, S. Molkov, I. Lapshov, and A. Tkachenko, Astron. Telegram, No. 14247, 1 (2020).

  28. N. Shakura, K. Postnov, L. Sidoli, and A. Paizis, Mon. Not. R. Astron. Soc. 442, 2325 (2014).

    Article  ADS  Google Scholar 

  29. B. J. Shappee, J. L. Prieto, D. Grupe, C. S. Kochanek, K. Z. Stanek, G. De Rosa, S. Mathur, Y. Zu, et al., Astrophys. J. 788, 48 (2014).

    Article  ADS  Google Scholar 

  30. R. Sunyaev, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  31. J. L. Tonry, C. W. Stubbs, K. R. Lykke, P. Doherty, I. S. Shivvers, W. S. Burgett, K. C. Chambers, K. W. Hodapp, et al., Astrophys. J. 750, 99 (2012).

    Article  ADS  Google Scholar 

  32. P. Ubertini, F. Lebrun, G. di Cocco, A. Bazzano, A. J. Bird, K. Broenstad, A. Goldwurm, and G. LaRosa, Astron. Astrophys. 411, 131 (2003).

    Article  Google Scholar 

  33. C. Winkler, T. J.-L. Courvoisier, G. Di Cocco, N. Gehrels, A. Giménez, S. Grebenev, W. Hermsen, and J. M. Mas-Hesse, et al., Astron. Astrophys. 411, L1 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to TÜBİTAK, the Space Research Institute, the Kazan Federal University, and the Academy of Sciences of Tatarstan for their partial support in using RTT-150 (the Russian–Turkish 1.5-m telescope in Antalya). We are grateful to R.Ya. Zhuchkov and S.S. Melnikov for their help in the RTT-150 observations.

Funding

The analysis of the physical parameters of the equatorial disk of the Be star in the system IGR J21343+4738 was supported by RSF grant no. 21-12-00210. The work of E.R. Irtuganov, M.A. Gorbachev, R.I. Gumerov, and N.A. Sakhibullin was supported in part by subsidy no. FZSM-2023-0015 of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Nikolaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, E.A., Bikmaev, I.F., Irtuganov, E.N. et al. Investigation of the Disk of the Be Star in the High-Mass X-ray Binary IGR J21343+4738. Astron. Lett. 49, 697–705 (2023). https://doi.org/10.1134/S1063773723110075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110075

Keywords:

Navigation