Skip to main content
Log in

Origin of the Near-Surface Shear Layer of Solar Rotation

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Helioseismology has revealed an increase in the rotation rate with depth in a thin (\({\sim}30\) Mm) near-surface layer. The normalized rotational shear in this layer does not depend on latitude. This rotational state is shown to be a consequence of the short characteristic time of near-surface convection compared to the rotation period and radial anisotropy of convective turbulence. Analytical calculations within mean-field hydrodynamics reproduce the observed normalized rotational shear and are consistent with numerical experiments on radiative hydrodynamics of solar convection. The near-surface shear layer is the source of global meridional flow important for the solar dynamo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. https://docs.mesastar.org

REFERENCES

  1. V. I. Abramenko, G. P. Zank, A. Dosch, V. B. Yurchyshyn, P. R. Goode, K. Ahn, and W. Cao, Astrophys. J. 773, 167 (2013).

    Article  ADS  Google Scholar 

  2. H. M. Antia and S. Basu, Astrophys. J. 924, 19 (2022).

    Article  ADS  Google Scholar 

  3. A. Barekat, J. Schou, and L. Gizon, Astron. Astrophys. 570, L12 (2014).

    Article  ADS  Google Scholar 

  4. A. Brandenburg, Astrophys. J. 625, 539 (2005).

    Article  ADS  Google Scholar 

  5. A. Brandenburg and K. Subramanian, Astron. Astrophys. 439, 835 (2005).

    Article  ADS  Google Scholar 

  6. A. V. Getling, O. S. Mazhorova, and O. V. Shcheritsa, Geomagn. Aeron. 53, 904 (2013).

    Article  ADS  Google Scholar 

  7. L. M. Gunderson and A. Battacharjee, Astrophys. J. 870, 47 (2019).

    Article  ADS  Google Scholar 

  8. G. Hazra, D. Nandy, L. L. Kitchatinov, and A. R. Choudhuri, Space Sci. Rev. 219, 39 (2023).

    Article  ADS  Google Scholar 

  9. H. Hotta, M. Rempel, and T. Yokoyama, Astrophys. J. 798, 42 (2015).

    Article  ADS  Google Scholar 

  10. B. K. Jha and A. R. Choudhuri, Mon. Not. R. Astron. Soc. 506, 2189 (2021).

    Article  ADS  Google Scholar 

  11. L. L. Kitchatinov, Phys. Usp. 48, 449 (2005).

    Article  ADS  Google Scholar 

  12. L. L. Kitchatinov, in Solar and Astrophysical Dynamos and Magnetic Activity, Proceedings of the IAU Symposium No. 294, Ed. by A. G. Kosovichev, E. de Gouveia Dal Pino, and Y. Yan (Cambridge Univ. Press, Cambridge, 2013), p. 399.

  13. L. L. Kitchatinov, Astron. Lett. 42 339 (2016a).

    Article  ADS  Google Scholar 

  14. L. L. Kitchatinov, Geomagn. Aeron. 56, 945 (2016b).

    Article  ADS  Google Scholar 

  15. L. L. Kitchatinov and S. V. Olemskoy, Mon. Not. R. Astron. Soc. 411, 1059 (2011).

    Article  ADS  Google Scholar 

  16. I. N. Kitiashvili, A. G. Kosovichev, A. A. Wray, V. M. Sadykov, and G. Guerrero, Mon. Not. R. Astron. Soc. 518, 504 (2023).

    Article  ADS  Google Scholar 

  17. R. Komm, Front. Astron. Space Sci. 9, 428 (2022).

    Article  Google Scholar 

  18. A. I. Lebedinskii, Astron. Zh. 18, 10 (1941).

    Google Scholar 

  19. Y. Lida, T. Yokoyama, and K. Ichimoto, Astrophys. J. 713, 325 (2010).

    Article  ADS  Google Scholar 

  20. B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E. F. Brown, A. Dotter, C. Mankovich, M. H. Montgomery et al., Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  21. V. V. Pipin and A. G. Kosovichev, Astrophys. J. 727, L45 (2011).

    Article  ADS  Google Scholar 

  22. G. Rüdiger, Differential Rotation and Stellar Convection: Sun and Solar-Type Stars (Akademie-Verlag, Berlin, 1989).

    Book  Google Scholar 

  23. G. Rüdiger, L. L. Kitchatinov, and R. Hollerbach, Magnetic Processes in Astrophysics (Wiley-VCH, Weinheim, 2013).

    Book  Google Scholar 

  24. J. Schou, H. M. Antia, S. Basu, R. S. Bogart, R. I. Bush, S. M. Chitre, J. Christensen-Dalsgaard, M. P. Di Mauro, et al., Astrophys. J. 505, 390 (1998).

    Article  ADS  Google Scholar 

  25. O. V. Shcheritsa, A. V. Getling, and O. S. Mazhorova, Phys. Lett. A 382, 639 (2018).

    Article  ADS  Google Scholar 

  26. M. Stix, G. Rüdiger, M. Knölker, and U. Grabowski, Astron. Astrophys. 272, 340 (1993).

    ADS  Google Scholar 

  27. M. J. Thompson, J. Toomre, E. R. Anderson, H. M. Antia, G. Berthomieu, D. Burtonclay, S. M. Chitre, J. Christensen-Dalsgaard, et al., Science (Washington, DC, U. S.) 272, 1300 (1996).

    Article  ADS  Google Scholar 

  28. L. Yelles Chaouche, R. H. Cameron, S. K. Solanki, T. L. Riethmüller, L. S. Anusha, V. Witzke, A. I. Shapiro, P. Barthol, et al., Astron. Astrophys. 644, 44 (2020).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and High Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Kitchatinov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitchatinov, L.L. Origin of the Near-Surface Shear Layer of Solar Rotation. Astron. Lett. 49, 754–761 (2023). https://doi.org/10.1134/S106377372311004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372311004X

Keywords:

Navigation