Skip to main content
Log in

New Interstellar Extinction Maps Based on Gaia and Other Sky Surveys

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present new three-dimensional (3D) interstellar extinction maps in the \(V\) and Gaia \(G\) filters within 2 kpc of the Sun, a 3D differential extinction (dust spatial distribution density) map along lines of sight in the same space, a 3D map of variations in the ratio of the extinctions in the \(V\) and Gaia \(G\) filters within 800 pc of the Sun, and a 2D map of total Galactic extinction through the entire dust half-layer from the Sun to extragalactic space for Galactic latitudes \(|b|>13^{\circ}\). The 3D maps have a transverse resolution from 3.6 to 11.6 pc and a radial resolution of 50 pc. The 2D map has an angular resolution of 6.1 arcmin. We have produced these maps based on the Gaia DR3 parallaxes and Gaia, Pan-STARRS1, SkyMapper, 2MASS, and WISE photometry for \({\sim}100\) million stars. We have paid special attention to the space within 200 pc of the Sun and high Galactic latitudes as regions where the extinction estimates have had a large relative uncertainty so far. Our maps estimate the extinction within the Galactic dust layer from the Sun to an extended object or through the entire dust half-layer from the Sun to extragalactic space with a precision \(\sigma(A_{\textrm{V}})=0.06\) mag. This gives a high relative precision of extinction estimates even at high Galactic latitudes, where, according to our estimates, the median total Galactic extinction through the entire dust half-layer from the Sun to extragalactic objects is \(A_{\textrm{V}}=0.12\pm 0.06\) mag. We have shown that the presented maps are among the best ones in data amount, space size, resolution, precision, and other properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. https://data.aip.de/projects/starhorse2021.html or https://cdsarc.cds.unistra.fr/viz-bin/cat/I/354

  2. Here and below, by the region near the Sun we mean the region with a radius of about 200 pc around it as a space where the typical uncertainty in the extinction is comparable to the extinction itself, while an insufficient number of stars does not allow many of the reddening/extinction determination methods, for example, the method of Green et al. (2019), to be applied.

  3. We consider the Galactic rectangular coordinate system with the origin in the Sun and the \(X\), \(Y\), and \(Z\) axes directed toward the Galactic center, in the direction of Galactic rotation, and toward the Galactic north pole, respectively. Examples of the cumulative and differential reddening/extinction maps as a function of \(XYZ\) are the maps by Gontcharov (2017) and Lallement et al. (2022), respectively.

  4. https://cdsarc.cds.unistra.fr/viz-bin/cat/J/PAZh/43/521

  5. http://argonaut.skymaps.info/

  6. http://www.galextin.org/

  7. Within 2 kpc of the Sun there are several billion such stars, or 99\(\%\) of all stars, including \({\sim}400\) million (\({\approx}80\%\)) stars from Gaia DR3).

REFERENCES

  1. E. B. Amôres and J. R. D. Lépine, Astron. J. 130, 659 (2005).

    Article  ADS  Google Scholar 

  2. F. Anders, A. Khalatyan, A. B. A. Queiroz, C. Chiappini, J. Ardèvol, L. Casamiquela, F. Figueras, Ó. Jiménez-Arranz, C. Jordi, et al., Astron. Astrophys. 658, A91 (2022).

    Article  Google Scholar 

  3. J. Anderson, A. Sarajedini, L. R. Bedin, I. R. King, G. Piotto, I. N. Reid, M. Siegel, S. R. Majewski, N. E. Q. Paust, et al., Astron. J. 135, 2055 (2008).

    Article  ADS  Google Scholar 

  4. H. Baumgardt and E. Vasiliev, Mon. Not. R. Astron. Soc. 505, 5957 (2021)

    Article  ADS  Google Scholar 

  5. M. Bellazzini, F. R. Ferraro, and R. Ibata, Astron. J. 124, 915 (2002).

    Article  ADS  Google Scholar 

  6. M. Berry, Z. Ivezić, B. Sesar, M. Jurić, E. F. Schlafly, J. Bellovary, D. Finkbeiner, D. Vrbanec, T. C. Beers, et al., Astrophys. J. 757, 166 (2012).

    Article  ADS  Google Scholar 

  7. E. Bica, D. B. Pavani, C. J. Bonatto, and E. F. Lima, Astron. J. 157, 12 (2019).

    Article  ADS  Google Scholar 

  8. C. Bonatto, F. Campos, and S. O. Kepler, Mon. Not. R. Astron. Soc. 435, 263 (2013).

    Article  ADS  Google Scholar 

  9. D. Bossini, A. Vallenari, A. Bragaglia, T. Cantat-Gaudin, R. Sordo, L. Balaguer-Núñez, C. Jordi, A. Moitinho, C. Soubiran, et al., Astron. Astrophys. 623, A108 (2019).

    Article  Google Scholar 

  10. A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. Dal Cero, S. Rubele, and A. Nanni, Mon. Not. R. Astron. Soc. 427, 127 (2012).

    Article  ADS  Google Scholar 

  11. D. Burger, K. G. Stassun, J. Pepper, R. J. Siverd, M. Paegert, N. M. de Lee, and W. H. Robinson, Astron. Comput. 2, 40 (2013).

    Article  ADS  Google Scholar 

  12. T. Cantat-Gaudin, F. Anders, A. Castro-Ginard, C. Jordi, M. Romero-Gómez, C. Soubiran, L. Casamiquela, Y. Tarricq, A. Moitinho, et al., Astron. Astrophys. 640, A1 (2020).

    Article  Google Scholar 

  13. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  14. L. Casagrande and D. A. VandenBerg, Mon. Not. R. Astron. Soc. 444, 392 (2014).

    Article  ADS  Google Scholar 

  15. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, L. Denneau, P. W. Draper, D. Farrow, et al., arXiv: 1612.05560 (2016).

  16. G. Clementini, V. Ripepi, A. Garofalo, R. Molinaro, T. Muraveva, S. Leccia, L. Rimoldini, B. Holl, G. Jevardat de Fombelle, et al., Astron. Astrophys. 674, A18 (2023).

    Article  Google Scholar 

  17. T. M. Dame, Dap Hartmann, and P. Thaddeus, Astrophys. J. 547, 792 (2001).

    Article  ADS  Google Scholar 

  18. A. Dotter, A. Sarajedini, and J. Anderson, Astrophys. J. 738, 74 (2011).

    Article  ADS  Google Scholar 

  19. R. Drimmel, A. Cabrera-Lavers, and M. López-Corredoira, Astron. Astrophys. 409, 205 (2003).

    Article  ADS  Google Scholar 

  20. GAIA Collab., Astron. Astrophys. 649, A1 (2021a).

    Article  Google Scholar 

  21. GAIA Collab., Astron. Astrophys. 649, A3 (2021b).

    Article  Google Scholar 

  22. GAIA Collab., Astron. Astrophys. 649, A4 (2021c).

    Article  Google Scholar 

  23. GAIA Collab., Astron. Astrophys. 674, A31 (2023).

    Article  Google Scholar 

  24. L. Girardi, M. A. T. Groenewegen, E. Hatziminaoglou, and L. da Costa, Astron. Astrophys. 436, 895 (2005).

    Article  ADS  Google Scholar 

  25. G. A. Gontcharov, Astron. Lett. 34, 785 (2008).

    Article  ADS  Google Scholar 

  26. G. A. Gontcharov, Astron. Lett. 35, 780 (2009).

    Article  ADS  Google Scholar 

  27. G. A. Gontcharov, Astron. Lett. 37, 707 (2011).

    Article  ADS  Google Scholar 

  28. G. A. Gontcharov, Astron. Lett. 38, 12 (2012a).

    Article  ADS  Google Scholar 

  29. G. A. Gontcharov, Astron. Lett. 38, 87 (2012b).

    Article  ADS  Google Scholar 

  30. G. A. Gontcharov, Astron. Lett. 38, 694 (2012c).

    Article  ADS  Google Scholar 

  31. G. A. Gontcharov, Astron. Lett. 39, 550 (2013).

    Article  ADS  Google Scholar 

  32. G. A. Gontcharov, Astron. Lett. 42, 445 (2016a).

    Article  ADS  Google Scholar 

  33. G. A. Gontcharov, Astrophysics 59, 548 (2016b).

    Article  ADS  Google Scholar 

  34. G. A. Gontcharov, Astron. Lett. 43, 472 (2017).

    Article  ADS  Google Scholar 

  35. G. A. Gontcharov, Astron. Lett. 45, 605 (2019).

    Article  ADS  Google Scholar 

  36. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 470, L97 (2017a).

    Article  ADS  Google Scholar 

  37. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 472, 3805 (2017b).

    Article  ADS  Google Scholar 

  38. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 475, 1121 (2018).

    Article  ADS  Google Scholar 

  39. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 483, 299 (2019).

    Article  ADS  Google Scholar 

  40. G. A. Gontcharov, M. Yu. Khovritchev, and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 497, 3674 (2020).

    Article  ADS  Google Scholar 

  41. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2590 (2021a).

    Article  ADS  Google Scholar 

  42. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2607 (2021b).

    Article  ADS  Google Scholar 

  43. G. A. Gontcharov, A. V. Mosenkov, and M. Yu. Khovritchev, Mon. Not. R. Astron. Soc. 483, 4949 (2019).

    Article  ADS  Google Scholar 

  44. G. A. Gontcharov, M. Yu. Khovritchev, A. V. Mosenkov, V. B. Il’in, A. A. Marchuk, S. S. Savchenko, A. A. Smirnov, P. A. Usachev, and D. M. Poliakov, Mon. Not. R. Astron. Soc. 508, 2688 (2021).

    Article  ADS  Google Scholar 

  45. G. A. Gontcharov, A. V. Mosenkov, S. S. Savchenko, V. B. Il’in, A. A. Marchuk, A. A. Smirnov, P. A. Usachev, D. M. Polyakov, and N. Hebdon, Astron. Lett. 48, 578 (2022).

    Article  ADS  Google Scholar 

  46. G. A. Gontcharov, M. Yu. Khovritchev, A. V. Mosenkov, V. B. Il’in, A. A. Marchuk, D. M. Poliakov, O. S. Ryutina, S. S. Savchenko, A. A. Smirnov, et al., Mon. Not. R. Astron. Soc. 518, 3036 (2023a).

    Article  ADS  Google Scholar 

  47. G. A. Gontcharov, O. S. Ryutina, S. S. Savchenko, A. V. Mosenkov, V. B. Il’in, M. Yu. Khovritchev, A. A. Marchuk, D. M. Poliakov, A. A. Smirnov, et al., Mon. Not. R. Astron. Soc. 526, 5628 (2023b).

    Article  ADS  Google Scholar 

  48. G. M. Green, E. F. Schlafly, D. P. Finkbeiner, H.-W. Rix, N. Martin, W. Burgett, P. W. Draper, H. Flewelling, K. Hodapp, et al., Astrophys. J. 810, 25 (2015).

    Article  ADS  Google Scholar 

  49. G. M. Green, E. F. Schlafly, C. Zucker, J. S. Speagle, and D. P. Finkbeiner, Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  50. H.-L. Guo, B.-Q. Chen, H.-B. Yuan, Y. Huang, D.-Z Liu, Y. Yang, X.-Y. Li, W.-X. Sun, and X.-W. Liu, Astrophys. J. 906, 47 (2021).

    Article  ADS  Google Scholar 

  51. P. Hamrick, A. Bansal, and K. Tock, J. Am. Assoc. Var. Star Observ. 49, 192 (2021).

    Google Scholar 

  52. W. E. Harris, Astron. J. 112, 1487 (1996).

    Article  ADS  Google Scholar 

  53. Z.-H. He, Y. Xu, C.-J. Hao, Z.-Y. Wu, and J.-J. Li, Res. Astron. Astrophys. 21, 093 (2021).

  54. E. L. Hunt and S. Reffert, Astron. Astrophys. 673, A114 (2023).

    Article  ADS  Google Scholar 

  55. R. J. Jackson, R. D. Jeffries, N. J. Wright, S. Randich, G. Sacco, A. Bragaglia, A. Hourihane, E. Tognelli, S. Degl’Innocenti, et al., Mon. Not. R. Astron. Soc. 509, 1664 (2022).

    Article  ADS  Google Scholar 

  56. A. Koch and A. McWilliam, Astron. Astrophys. 565, A23 (2014).

    Article  ADS  Google Scholar 

  57. R. Lallement, J. L. Vergely, C. Babusiaux, and N. L. J. Cox, Astron. Astrophys. 661, A147 (2022).

    Article  ADS  Google Scholar 

  58. A. M. Meisner and D. P. Finkbeiner, Astrophys. J. 798, 88 (2015).

    Article  ADS  Google Scholar 

  59. H. Monteiro, W. S. Dias, A. Moitinho, T. Cantat-Gaudin, J. R. D. Lépine, G. Carraro, and E. Paunzen, Mon. Not. R. Astron. Soc. 499, 1874 (2020).

    Article  ADS  Google Scholar 

  60. H. Niu, J. Wang, and J. Fu, Astrophys. J. 903, 93 (2020).

    Article  ADS  Google Scholar 

  61. C. A. Onken, C. Wolf, M. S. Bessell, S.-W. Chang, G. S. Da Costa, L. C. Luvaul, D. Mackey, B. P. Schmidt, and L. Shao, Publ. Astron. Soc. Austral. 36, 33 (2019).

    Article  ADS  Google Scholar 

  62. G. V. Panopoulou, S. E. Clark, A. Hacar, F. Heitsch, J. Kainulainen, E. Ntormousi, D. Seifried, and R. J. Smith, Astron. Astrophys. 663, C1 (2022).

    Article  Google Scholar 

  63. A. B. A. Queiroz, F. Anders, B. X. Santiago, C. Chiappini, M. Steinmetz, M. Dal Ponte, K. G. Stassun, L. N. da Costa, M. A. G. Maia, et al., Mon. Not. R. Astron. Soc. 476, 2556 (2018).

    Article  ADS  Google Scholar 

  64. A. Recio-Blanco, G. Piotto, F. De Angeli, S. Cassisi, M. Riello, M. Salaris, A. Pietrinferni, M. Zoccali, and A. Aparicio, Astron. Astrophys. 432, 851 (2005).

    Article  ADS  Google Scholar 

  65. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  66. E. F. Schlafly, A. M. Meisner, A. M. Stutz, J. Kainulainen, J. E. G. Peek, K. Tchernyshyov, H.-W. Rix, D. P. Finkbeiner, K. R. Covey, et al., Astrophys. J. 821, 78 (2016).

    Article  ADS  Google Scholar 

  67. E. F. Schlafly, J. E. G. Peek, D. P. Finkbeiner, and G. M. Green, Astrophys. J. 838, 36 (2017).

    Article  ADS  Google Scholar 

  68. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  69. M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter, C. Beichman, R. Capps, T. Chester, et al., Astron. J. 131, 1163 (2006).

    Article  ADS  Google Scholar 

  70. R. Wagner-Kaiser, D. C. Stenning, A. Sarajedini, T. von Hippel, D. A. van Dyk, E. Robinson, N. Stein, and W. H. Jefferys, Mon. Not. R. Astron. Soc. 463, 3768 (2016).

    Article  ADS  Google Scholar 

  71. R. Wagner-Kaiser, A. Sarajedini, T. von Hippel, D. C. Stenning, D. A. van Dyk, E. Jeffery, E. Robinson, N. Stein, J. Anderson, and W. H. Jefferys, Mon. Not. R. Astron. Soc. 468, 1038 (2017).

    Article  ADS  Google Scholar 

  72. E. L. Wright et al., Astrophys. J. 140, 1868 (2010).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the referees for their useful remarks.

Funding

This study was supported by the Russian Science Foundation (project no. 20-72-10052). In this study we used resources from the Strasbourg Astronomical Data Center (http://cdsweb.u-strasbg.fr), including the SIMBAD database and the X-Match service, the Filtergraph online data visualization system (Burger et al. 2013, https://filtergraph.com), data from the Gaia mission of the European Space Agency (https://www.cosmos.esa.int/ gaia) processed by the Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/ dpac/consortium), data from the Wide-field Infrared Survey Explorer—a joint project of the University of California, the Los Angeles and Jet Propulsion Laboratory/California Institute of Technology, data from the SkyMapper Southern Sky Survey project belonging to and operated by the Australian National University’s Research School of Astronomy and Astrophysics, data from the Two Micron All Sky Survey—a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology funded by the National Aeronautics and Space Administration and National Science Foundation, and Pan-STARRS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gontcharov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontcharov, G.A., Marchuk, A.A., Khovrichev, M.Y. et al. New Interstellar Extinction Maps Based on Gaia and Other Sky Surveys. Astron. Lett. 49, 673–696 (2023). https://doi.org/10.1134/S1063773723110026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110026

Keywords:

Navigation