Skip to main content
Log in

Reliability through an optimal SDS controller’s placement in a SDDC and smart city

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Data center storage systems have different workloads and characteristics. In a centralized managed storage paradigm (software defined data center), providing a fault-tolerant system requires the best possible placement, and the least possible numbers of software defined storage (SDS) controllers. The separation of storage intelligence from storage resources raises the SDS controller’s placement problem, which in turn, raises the reliability’s issue (the main controller’s failure leads to unavailability). The unavailability—down time—cost too much to an organization. To protect against the single point of failure, and at the same time, facilitate a fault-tolerant storage network, center of gravity technique is presented for optimal location selection. The method analyzes different work-loads, distance, and link bandwidth among controllers and OpenFlow enabled switches, and proposes multiple optimal locations for the controllers’ deployment. We show the best optimal controllers’ placement for various scenarios, e.g., single optimal placement for a big enterprise, and multiple proposed optimal placements for multiple SDS controllers containing various openFlow switches. These controllers can be the part of a large distributed Internet of Things (IoT) architecture. Experiments show that the work-load, distance, and the bandwidth are three important factors that can affect the whole network’s reliability (the controllers’ placement).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Thorat, P., Challa, R., Raza, S.M., Kim, D.S., Choo, H.: Proactive failure recovery scheme for data traffic in software defined networks. In: Proceedings of the 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 219–225 (2016)

  2. Zheng, Q., Ren, K., Gibson, G., Settlemyer, B.W., Grider, G.: Deltafs: exascale file systems scale better without dedicated servers. In: Proceedings of the 10th Parallel Data Storage Workshop, ser. PDSW ’15. New York, NY, USA: ACM, pp. 1–6 (2015)

  3. Heller, B., Sherwood, R., McKeown, N.: The controller placement problem. In: Proceedings of the First Workshop on Hot Topics in software Defined Networks. ACM, pp. 7–12 (2012)

  4. Bhole, P.D., Puri, D.D.: Distributed hierarchical control plane of software defined networking. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 516–522 (2015)

  5. Ros, F.J., Ruiz, P.M.: Five nines of southbound reliability in software-defined networks. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, ser. HotSDN ’14. New York, NY, USA: ACM, pp. 31–36 (2014)

  6. Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock, D., Jarschel, M., Hoffmann, M.: Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag. 12(1), 4–17 (2015)

    Article  Google Scholar 

  7. Jalili, A., Ahmadi, V., Keshtgari, M., Kazemi, M.: Controller placement in software-defined wan using multi objective genetic algorithm. In: Proceedings of the 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 656–662 (2015)

  8. Sallahi, A., St-Hilaire, M.: Optimal model for the controller placement problem in software defined networks. IEEE Commun. Lett. 19(1), 30–33 (2015)

    Article  Google Scholar 

  9. Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., Kompella, R.: Towards an elastic distributed SDN controller. SIGCOMM Comput. Commun. Rev. 43(4), 7–12 (2013)

    Article  Google Scholar 

  10. Liao, J., Sun, H., Wang, J., Qi, Q., Li, K., Li, T.: Density cluster based approach for controller placement problem in large-scale software defined networkings. Comput. Netw. 112, 24–35 (2017)

    Article  Google Scholar 

  11. Miranda, A., Effert, S., Kang, Y., Miller, E.L., Popov, I., Brinkmann, A., Friedetzky, T., Cortes, T.: Random slicing: efficient and scalable data placement for large-scale storage systems. ACM Trans. Storage 10(3), 1–35 (2014)

    Article  Google Scholar 

  12. Huang, C., Chen, M., Li, J.: Pyramid codes: flexible schemes to trade space for access efficiency in reliable data storage systems. ACM Trans. Storage 9(1), 3 (2013)

    Article  Google Scholar 

  13. Zhang, G., Wu, G., Lu, Y., Wu, J., Zheng, W.: Xscale: online x-code raid-6 scaling using lightweight data reorganization. IEEE Trans. Parallel Distrib. Syst. 27(12), 3687–3700 (2016)

    Article  Google Scholar 

  14. Luo, S., Hou, M., Zhan, S., Lyu, M., Li, M.: Consistency maintenance in replication: a novel strategy based on diamond topology in cloud storage. Chin. J. Electron. 26(1), 192–198 (2017)

    Article  Google Scholar 

  15. Zhang, X., Sprouse, S., Ilani, I.: A flexible and low-complexity local erasure recovery scheme. IEEE Commun. Lett. 20(11), 2129–2132 (2016)

    Article  Google Scholar 

  16. Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.F.R.: Joint latency and cost optimization for erasure-coded data center storage. IEEE/ACM Trans. Netw. 24(4), 2443–2457 (2016)

    Article  Google Scholar 

  17. Chen, T.-Y., Wei, H.-W., Yeh, T.-T., Hsu, T.-S., Shih, W.-K.: An energy-efficient and reliable storage mechanism for data-intensive academic archive systems. ACM Trans. Storage 11(2), 1–21 (2015)

    Article  Google Scholar 

  18. Kannan, S., Qureshi, M., Gavrilovska, A., Schwan, K.: Energy aware persistence: reducing the energy overheads of persistent memory. IEEE Comput. Archit. Lett. 15(2), 89–92 (2016)

    Article  Google Scholar 

  19. Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile memories for storage and main memory systems. IEEE Trans. Parallel Distrib. Syst. 27(5), 1537–1550 (2016)

    Article  Google Scholar 

  20. Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., Yang, G.: The sunway taihulight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 072001 (2016)

    Article  Google Scholar 

  21. Gracia-Tinedo, R., García-López, P., Sánchez-Artigas, M., Sampé, J., Moatti, Y., Rom, E., Naor, D., Nou, R., Cortés, T., Oppermann, W., Michiardi, P.: IOStack: software-defined object storage. IEEE Internet Comput. 20(3), 10–18 (2016)

    Article  Google Scholar 

  22. Swift, https://wiki.openstack.org/wiki/Swift (2017). Accessed 30 Oct 2017

  23. Gracia-Tinedo, R., Sampé, J., Zamora-Gómez, E., Sánchez-Artigas, M., García-López, P., Moatti, Y., Rom, E.: Crystal: software-defined storage for multi-tenant object stores. In: Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST 17). USENIX Association (2017)

  24. Murugan, M., Kant, K., Raghavan, A., Du, D.: FlexStore: a software defined, energy adaptive distributed storage framework. In: Proceedings of the 22nd IEEE International Symposium on Modelling, Analysis Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 81–90 (2014)

  25. Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., Viljoen, N., Miller, M., Rao, N.: Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 51(7), 36–43 (2013)

    Article  Google Scholar 

  26. Basak, J., Wadhwani, K., Voruganti, K.: Storage workload identification. ACM Trans. Storage 12(3), 1–30 (2016)

    Google Scholar 

  27. Research, S.: Ip service provider down time study: Analysis of down time causes, costs and containment strategies (cisco splob) (2001)

  28. Changtong, L.: An improved HDFS for small file. In: 2016 18th International Conference on Advanced Communication Technology (ICACT), pp. 474–477 (2016)

  29. Raghavendra, R., Dewan, P., Srivatsa, M.: Unifying HDFS and GPFS: enabling analytics on software-defined storage. In: Proceedings of the 17th International Middleware Conference, ser. Middleware ’16, pp. 1–13 (2016)

  30. Li, X., Dong, B., Xiao, L., Ruan, L., Ding, Y.: Small files problem in parallel file system. In: 2011 International Conference on Network Computing and Information Security (NCIS), vol. 2, pp. 227–232 (2011)

  31. Wang, A., Guo, Y., Hao, F., Lakshman, T., Chen, S.: Scotch: elastically scaling up SDN control-plane using vswitch based overlay. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, ser. CoNEXT ’14. New York, NY, USA: ACM, pp. 403–414 (2014)

  32. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: a distributed control platform for large-scale production networks. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’10. USENIX Association, Berkeley, CA, USA, pp. 351–364 (2010)

  33. Hassas Yeganeh, S., Ganjali, Y.: Kandoo: a framework for efficient and scalable offloading of control applications. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, ser. HotSDN ’12. ACM, New York, NY, USA, pp. 19–24 (2012)

  34. Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P.: Fast failure recovery for in-band openflow networks. In: Proceedings of the 2013 9th International conference on the Design of reliable communication networks (DRCN). IEEE, pp. 52–59 (2013)

  35. Zhang, S., Wang, Y., He, Q., Yu, J., Guo, S.: Backup-resource based failure recovery approach in SDN data plane. In: Proceedings of the 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE pp. 1–6 (2016)

  36. Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P.: Enabling fast failure recovery in openflow networks. In: Proceedings of the 2011 8th International Workshop on the Design of Reliable Communication Networks (DRCN). IEEE, pp. 164–171 (2011)

  37. Dixit, A. A., Hao, F., Mukherjee, S., Lakshman, T., Kompella, R.: Elasticon: an elastic distributed SDN controller. In: Proceedings of the Tenth ACM/IEEE Symposium on Architectures for Networking and Communications Systems, ser. ANCS ’14. ACM, New York, NY, USA (2014), pp. 17–28

  38. Krishnamurthy, A., Chandrabose, S.P., Gember-Jacobson, A.: Pratyaastha: an efficient elastic distributed SDN control plane. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, ser. HotSDN ’14. ACM, New York, NY, USA, pp. 133–138 (2014)

  39. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

    Article  Google Scholar 

  40. Hu, Y., Wendong, W., Gong, X., Que, X., Shiduan, C.: Reliability-aware controller placement for software-defined networks. In: Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network Management, pp. 672–675 (2013)

  41. Xin, Q., Miller, E.L., Schwarz, T., Long, D.D.E., Brandt, S.A., Litwin, W.: Reliability mechanisms for very large storage systems. In: Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies, 2003. (MSST 2003), pp. 146–156 (2003)

  42. Tootoonchian, A., Ganjali, Y.: Hyperflow: a distributed control plane for openflow. In: Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise Networking, p. 3 (2010)

  43. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.: Devoflow: scaling flow management for high-performance networks. SIGCOMM Comput. Commun. Rev. 41(4), 254–265 (2011)

    Article  Google Scholar 

  44. Liu, J., Liu, J., Xie, R.: Reliability-based controller placement algorithm in software defined networking. Comput. Sci. Inf. Syst. 00, 14–14 (2016)

    Google Scholar 

  45. Yao, G., Bi, J., Li, Y., Guo, L.: On the capacitated controller placement problem in software defined networks. IEEE Commun. Lett. 18(8), 1339–1342 (2014)

    Article  Google Scholar 

  46. Sapkota, B., Dawadi, B.R., Joshi, S.R.: Controller placement problem during SDN deployment in the ISP/telco networks: a survey. Eng. Rep. 6, e12801 (2023)

    Article  Google Scholar 

  47. Tadros, C.N., Mokhtar, B., Rizk, M.R.: Software defined network-based management architecture for 5g network. In: Paradigms of Smart and Intelligent Communication, 5G and Beyond, pp. 171–195. Springer, New York (2023)

  48. Sapkota, A., Dawadi, B.B.R., Joshi, C.S.R. et al.: Multi-controller placement optimization using naked mole-rat algorithm over software-defined networking environment. J. Comput. Netw. Commun. (2022)

  49. Hall, R.J.: Tools for predicting the reliability of large-scale storage systems. ACM Trans. Storage 12(4), 1–30 (2016)

    Article  Google Scholar 

  50. Braun, T., Fung, B.C., Iqbal, F., Shah, B.: Security and privacy challenges in smart cities. Sustain. Cities Soc. 39, 499–507 (2018)

    Article  Google Scholar 

  51. Butt, T.A., Afzaal, M.: Security and privacy in smart cities: Issues and current solutions. In: Smart Technologies and Innovation for a Sustainable Future, pp. 317–323. Springer, New York (2019)

  52. Ralko, S., Kumar, S.: Smart city security (2016)

  53. Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., Shen, X.S.: Security and privacy in smart city applications: challenges and solutions. IEEE Commun. Mag. 55(1), 122–129 (2017)

    Article  Google Scholar 

  54. Zhang, K., Lu, R., Liang, X., Qiao, J., Shen, X.S.: Park: a privacy-preserving aggregation scheme with adaptive key management for smart grid. In: 2013 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, pp. 236–241 (2013)

  55. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  56. Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an internet of things application. IEEE Commun. Mag. 49(11), 68–75 (2011)

    Article  Google Scholar 

  57. Neirotti, P., De Marco, A., Cagliano, A.C., Mangano, G., Scorrano, F.: Current trends in smart city initiatives: some stylised facts. Cities 38, 25–36 (2014)

    Article  Google Scholar 

  58. Zhang, K., Yang, K., Liang, X., Su, Z., Shen, X., Luo, H.H.: Security and privacy for mobile healthcare networks: from a quality of protection perspective. IEEE Wirel. Commun. 22(4), 104–112 (2015)

    Article  Google Scholar 

  59. Arabo, A.: Privacy-aware IoT cloud survivability for future connected home ecosystem. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA). IEEE, pp. 803–809 (2014)

  60. Islam, K., Shen, W., Wang, X.: Security and privacy considerations for wireless sensor networks in smart home environments. In: Proceedings of the 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, pp. 626–633 (2012)

  61. Hossain, M.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues, challenges, and open problems in the internet of things. In: 2015 IEEE World Congress on Services. IEEE, pp. 21–28 (2015)

  62. Riahi, A., Challal, Y., Natalizio, E., Chtourou, Z., Bouabdallah, A.: A systemic approach for IoT security. In: 2013 IEEE International Conference on Distributed Computing in Sensor Systems. IEEE, pp. 351–355 (2013)

  63. Ouaddah, A., Mousannif, H., Elkalam, A.A., Ouahman, A.A.: Access control in the internet of things: big challenges and new opportunities. Comput. Netw. 112, 237–262 (2017)

    Article  Google Scholar 

  64. Klein, A.: ARD drive reliability review for 2015 (backblaze), techreport, (2016). Accessed 29 Nov 2016. https://www.backblaze.com/blog/hard-drive-reliability-q4-2015/

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in this article to their best.

Corresponding author

Correspondence to Yawar Abbas Bangash.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangash, Y.A., Iqbal, W., Mussiraliyeva, S. et al. Reliability through an optimal SDS controller’s placement in a SDDC and smart city. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04325-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04325-6

Keywords

Navigation