Skip to main content
Log in

Investigating the physical properties of traversable wormholes in the modified f(RT) gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Wormholes are considered to be hypothetical tunnels connecting two distant regions of the universe or two different universes. In general relativity (GR), the formation of traversable WH requires the consideration of exotic matter that violates energy conditions (ECs). If the wormhole geometry can be described in modified gravitational theories without introducing exotic matter, it will be significant for studying these theories. In the paper, we analyze some physical properties of static traversable WH within the framework of f(RT) modified gravitational theory. Firstly, we explore the validity of the null, weak, dominant and strong energy conditions for wormhole matter for the considered \(f(R,T)=R+\alpha R^2+\lambda T\) model. Research shows that it is possible to obtain traversable WH geometry without bring in exotic matter that violates the null energy condition (NEC) in the f(RT) theory. The violation of the dominant energy condition (DEC) in this model may be related to quantum fluctuations or indicates the existence of special matter that violates this EC within the wormhole. Moreover, it is found that in the \(f(R,T)=R+\alpha R^2+\lambda T\) model, relative to the GR, the introduction of the geometric term \(\alpha R^2\) has no remarkable impact on the wormhole matter components and their properties, while the appearance of the matter-geometry coupling term \(\lambda T\) can resolve the question that WH matter violates the null, weak and strong energy condition in GR. Additionally, we investigate dependency of the valid NEC on model parameters and quantify the matter components within the wormhole using the “volume integral quantifier”. Lastly, based on the modified Tolman–Oppenheimer–Volkov equation, we find that the traversable WH in this theory is stable. On the other hand, we use the classical reconstruction technique to derive wormhole solution in f(RT) theory and discuss the corresponding ECs of matter. It is found that all four ECs (NEC, WEC, SEC and DEC) of matter in the traversable wormholes are valid in this reconstructed f(RT) model, i.e we provide a wormhole solution without introducing the exotic matter and special matter in f(RT) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

My manuscript has no associated data. Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Perlmutter, S., et al.: Astrophys. J. Lett. 517, 565 (1999)

    Article  Google Scholar 

  2. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  3. De Felice, A., Tsujikawa, S.: Liv. Rev. Rel. 13, 161 (2010)

    Google Scholar 

  4. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D. 84, 024020 (2011)

    Article  ADS  Google Scholar 

  5. Moraes, P.H.R.S., Ribeiro, G., et al.: Space Sci. 361, 227 (2016)

    Article  ADS  Google Scholar 

  6. Moraes, P.H.R.S., Correa, R.A.C.: Astrophys. Space Sci. 361, 91 (2016)

    Article  ADS  Google Scholar 

  7. Correa, R.A.C., Moraes, P.H.R.S.: Eur. Phys. J. C 76, 100 (2016)

    Article  ADS  Google Scholar 

  8. Moraes, P.H.R.S., Santos, J.R.L.: Eur. Phys. J. C 76, 60 (2016)

    Article  ADS  Google Scholar 

  9. Moraes, P.H.R.S.: Int. J. Theor. Phys. 55, 1307 (2016)

    Article  Google Scholar 

  10. Moraes, P.H.R.S.: Eur. Phys. J. C 75, 168 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Baffou, E.H., et al.: Phys. Rev. D 92, 084043 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Shabani, H., Farhoudi, M.: Phys. Rev. D 90, 044031 (2014)

    Article  ADS  Google Scholar 

  13. Moraes, P.H.R.S.: Astrophys. Space Sci. 352, 273 (2014)

    Article  ADS  Google Scholar 

  14. Shabani, H., Farhoudi, M.: Phys. Rev. D 88, 044048 (2013)

    Article  ADS  Google Scholar 

  15. Momeni, D., et al.: Astrophys. Space Sci. 361, 228 (2016)

    Article  ADS  Google Scholar 

  16. Harko, T.: Phys. Rev. D 90, 044067.12 (2014)

    Article  ADS  Google Scholar 

  17. Sharif, M., Zubair, M.: JCAP 03, 028 (2012)

    Article  ADS  Google Scholar 

  18. Sharif, M., Zubair, M.: JCAP 05, 001 (2012)

    ADS  Google Scholar 

  19. Alves, M.E.S., et al.: Phys. Rev. D 94, 024032 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Flamm, L.: Phys. Z. 17, 448 (1916)

    Google Scholar 

  21. Einstein, A., Rosen, N.: Phys. Rev. 48, 73 (1935)

    Article  ADS  Google Scholar 

  22. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395 (1988)

    Article  ADS  Google Scholar 

  23. Visser, M.: Phys. Rev. D. 56(12), 7578 (1997)

    Article  ADS  Google Scholar 

  24. Josset, T., Perez, A., Sudarsky, D.: Phys. Rev. Lett. 118, 021102 (2017)

    Article  ADS  Google Scholar 

  25. Sushkov, S.V.: Phys. Rev. D 71, 043520 (2005)

    Article  ADS  Google Scholar 

  26. Harko, T., Lobo, F.S.N., et al.: Phys. Rev. D 87(2013), 067504 (2013)

    Article  ADS  Google Scholar 

  27. Jawad, A., Rani, S.: Eur. Phys. J. C 76, 704 (2016)

    Article  ADS  Google Scholar 

  28. Azizi, T.: Int. J. Theor. Phys. 52, 3486 (2013)

    Article  Google Scholar 

  29. Zubair, M., Waheed, S., Ahmad, Y.: Eur. Phys. J. C 76, 444 (2016)

    Article  ADS  Google Scholar 

  30. Yousaf, Z., Ilyas, M., Bhatti, M.Z.: Eur. Phys. J. Plus 132, 268 (2017)

    Article  Google Scholar 

  31. Moraes, P.H.R.S., Correa, R.A.C., Lobato, R.V.: JCAP 7, 029 (2017)

    Article  ADS  Google Scholar 

  32. Moraes, P.H.R.S., Sahoo, P.K.: Phys. Rev. D. 96, 044038 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yousaf, Z., Ilyas, M., Bhatti, M.Z.: Mod. Phys. Lett. A 32, 1750163 (2017)

    Article  ADS  Google Scholar 

  34. Noureen, I., Zubair, M.: Eur. Phys. J. C 75, 62 (2015)

    Article  ADS  Google Scholar 

  35. Noureen, I., et al.: Eur. Phys. J. C 75, 323 (2015)

    Article  ADS  Google Scholar 

  36. Zubair, M., Noureen, I.: Eur. Phys. J. C 75, 265 (2015)

    Article  ADS  Google Scholar 

  37. Koslehev, A.S., et al.: JHEP 11, 67 (2016)

    Article  ADS  Google Scholar 

  38. Gorbunov, D., Tokareva, A.: J. Exp. Theor. Phys. 120, 528 (2015)

    Article  ADS  Google Scholar 

  39. Garcia, N.M., Lobo, F.S.N.: Class. Quantum Grav. 28, 085018 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  40. Rahaman, F., et al.: Eur. Phys. J. C 74, 2750 (2014)

    Article  ADS  Google Scholar 

  41. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  42. Fu, X., et al.: Eur. Phys. J. C 68, 271 (2010)

    Article  ADS  Google Scholar 

  43. Pavlovic, P., Sossich, M.: Eur. Phys. J. C 75, 117 (2015)

    Article  ADS  Google Scholar 

  44. Kaneda, S., Ketov, S.V.: Eur. Phys. J. C 76, 26 (2016)

    Article  ADS  Google Scholar 

  45. Lu, J., Yang, S., Guo, J., Liu, Y., Xu, M., Wang, J.: Found. Phys. 53, 5 (2023)

    Article  ADS  Google Scholar 

  46. de la Cruz-Dombriz, A., Dobado, A.: Phys. Rev. D 74, 087501 (2006)

    Article  ADS  Google Scholar 

  47. Carloni, S., Goswami, R., Dunsby, P.K.S.: Class. Quant. Grav. 29, 135012 (2012)

    Article  ADS  Google Scholar 

  48. Dunsby, P.K.S., Elizalde, E., Goswami, R., Odintsov, S., Saez-Gomez, D.: Phys. Rev. D 82, 023519 (2010)

    Article  ADS  Google Scholar 

  49. Nojiri, S., Odintsov, S.D., Toporensky, A., Tretyakov, P.: Gen. Relativ. Gravit. 42, 1997 (2010)

    Article  ADS  Google Scholar 

  50. Houndjo, M.J.S., Piattella, O.F.: Int. J. Mod. Phys. D 21, 1250024 (2012)

    Article  ADS  Google Scholar 

  51. Sahoo, P.K., Moraes, P.H.R.S., Sahoo, P.: Eur. Phys. J. C 78, 46 (2018). arXiv:1709.07774

    Article  ADS  Google Scholar 

  52. Moraes, P.H.R.S., Sahoo, P.K.: Eur. Phys. J. C 79(8), 677 (2019). arXiv:1903.03421

    Article  ADS  Google Scholar 

  53. Moraes, P.H.R.S., de Paula, W., Correa, R.A.C.: Int. J. Mod. Phys. D 28, 1950098 (2019). [arXiv:1710.07680]

    Article  ADS  Google Scholar 

  54. Zubair, M., Kousar, F., Bahamonde, S.: Eur. Phys. J. Plus 133, 523 (2018). arXiv:1712.05699

    Article  Google Scholar 

  55. Singh, K.N., Errehymy, A., Rahaman, F., Daoud, M. arXiv:2002.08160

  56. Chanda, A., Dey, S., Paul, B.C.: Gen. Relativ. Gravit. 53, 78 (2021). [arXiv:2102.01556]

    Article  ADS  Google Scholar 

  57. Lobo, F.S.N., Oliveira, M.A.: Phys. Rev. D 80, 104012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  58. Rahaman, F., Paul, N., et al.: Eur. Phys. J. C 76, 246 (2016)

    Article  ADS  Google Scholar 

  59. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure Of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  60. Raychaudhuri, A.: Phys. Rev. 98, 1123 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  61. Sokoliuk, O., Baransky, A.: Eur. Phys. J. C 81, 781 (2021)

    Article  ADS  Google Scholar 

  62. Schon, R., Yau, S.T.: Commun. Math. Phys. 79, 231 (1981)

    Article  ADS  Google Scholar 

  63. Cattoen, C., Visser, M.: J. Phys.: Conf. Ser. 68, 012011 (2007)

    Google Scholar 

  64. Jusufi, K., Channuie, P., Jamil, M.: Eur. Phys. J. C 80(2), 127 (2020)

    Article  ADS  Google Scholar 

  65. Visser, M.: Int. J. Mod. Phys. D 11, 1553–1560 (2002)

    Article  ADS  Google Scholar 

  66. Lobo, F.S.N. Classical and Quantum Gravity Research, pp. 1–78 (2008)

  67. Santiago, J., Schuster, S., Visser, M.: Phys. Rev. D 105, 064038 (2022). [arXiv:2105.03079]

    Article  ADS  Google Scholar 

  68. Kar, S., Dadhich, N., Visser, M.: Pramana 63, 859–864 (2004). [arXiv:gr-qc/0405103]

    Article  ADS  Google Scholar 

  69. Visser, M., Kar, S., Dadhich, N.: Phys. Rev. Lett. 90, 201102 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  70. Khufittig, P.K.F.: Eur. Phys. J. C 74, 2818 (2014)

    Article  ADS  Google Scholar 

  71. Rahaman, F., Kuhfittig, P.K.F., Ray, S., Islam, N.: Eur. Phys. J. C 74, 2750 (2014). [arXiv:1307.1237]

    Article  ADS  Google Scholar 

  72. Sokoliuk, O., Baransky, A., Sahoo, P.K.: Nucl. Phys. B 930, 115845 (2022). arXiv:2205.14011

    Article  Google Scholar 

  73. Bagheri Tudeshki, A., Bordbar, G.H., Eslam Panah, B.: Phys. Lett. B 835, 137523 (2022). arXiv:2208.07063

    Article  Google Scholar 

  74. Samanta, G.C., Godani, N.: Eur. Phys. J. C 79, 623 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research work is supported by the National Natural Science Foundation of China (12175095,12075109 and 11865012), and supported by LiaoNing Revitalization Talents Program (XLYC2007047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Xu, M., Guo, J. et al. Investigating the physical properties of traversable wormholes in the modified f(RT) gravity. Gen Relativ Gravit 56, 37 (2024). https://doi.org/10.1007/s10714-024-03223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03223-x

Keywords

Navigation