Skip to main content

Advertisement

Log in

Unveiling the Health Benefits of Prebiotics: A Comprehensive Review

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Prebiotics play a pivotal role in fostering probiotics, essential contributors to the creation and maintenance of a conducive environment for beneficial microbiota within the human gut. To qualify as a prebiotic, a substance must demonstrate resilience to stomach enzymes, acidic pH levels, and intestinal bacteria, remaining unabsorbed in the digestive system while remaining accessible to gut microflora. The integration of prebiotics and probiotics into our daily diet establishes a cornerstone for optimal health, a priority for health-conscious consumers emphasizing nutrition that supports a balanced gut flora. Prebiotics offer diverse biological functions in humans, exhibiting antiobesity, antimicrobial, anticancer, anti-inflammatory, antidiabetic, and cholesterol-lowering properties, along with preventing digestive disorders. Numerous dietary fibers possessing prebiotic attributes are inadvertently present in our diets, emphasizing the broader significance of prebiotics. It is crucial to recognize that, while all dietary fibers are prebiotics, not all prebiotics fall under the category of dietary fibers. The versatile applications of prebiotics extend across various industries, such as dairy, bakery, beverages, cosmetics, pharmaceuticals, and other food products. This comprehensive review provides insights into different prebiotics, encompassing their sources, chemical compositions, and applications within the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAO (2002) Food and Agricultural Organization of the United Nations and World Health Organization. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food

  2. Fata GL, Rastall RA, Lacroix C, Harmsen HJM, Mohajeri MH, Weber P, Steinert RE (2017) Recent development of prebiotic research-statement from an expert workshop. Nutrients 9:1376. https://doi.org/10.3390/nu9121376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Codex Alimentarius Commission (2018) Joint FAO/WHO Food Standards Programme. CODEX Committee on nutrition and foods for special dietary uses, fortieth session, Berlin, Germany, pp 1–14

  4. Kusar A, Zmitek K, Lahteenmaki L, Raats MM, Pravst I (2021) Comparison of requirements for using health claims on foods in the European Union, the USA, Canada, and Australia/New Zealand. Compr Rev Food Sci Food Saf 20:1307–1332. https://doi.org/10.1111/1541-4337.12716

    Article  PubMed  Google Scholar 

  5. McKeown NM, Fahey GC, Slavin J, van der Kamp JW (2022) Fibre intake for optimal health: How can healthcare professionals support people to reach dietary recommendations? Br Med J 378:e054370. https://doi.org/10.1136/bmj-2020-054370

    Article  Google Scholar 

  6. Hussein LA (2022) Novel prebiotics and next-generation probiotics: opportunities and challenges. In: Singh RB (ed) Functional foods and nutraceuticals in metabolic and non-communicable diseases. Academic Press, Elsevier, pp 431–457. https://doi.org/10.1016/B978-0-12-819815-5.00055-0

    Chapter  Google Scholar 

  7. Rosa MC, Carmo MR, Balthazar CF, Guimarães JT, Esmerino EA, Freitas MQ, Silva MC, Pimentel TC, Cruz AG (2021) Dairy products with prebiotics: an overview of the health benefits, technological and sensory properties. Int Dairy J 117:105009. https://doi.org/10.1016/j.idairyj.2021.105009

    Article  CAS  Google Scholar 

  8. Putaala H (2013) Polydextrose in lipid metabolism. In: Valenzuela BR (ed) lipid metabolism. Intech Open, Rijeka, pp 233–260. https://doi.org/10.5772/51791

    Chapter  Google Scholar 

  9. Do Carmo MM, Walker JC, Novello D, Caselato VM, Sgarbieri VC, Ouwehand AC, Andreollo NA, Hiane PA, Dos Santos EF (2016) Polydextrose: physiological function, and effects on health. Nutrients 8:553. https://doi.org/10.3390/nu8090553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Röytiö H, Ouwehand AC (2014) The fermentation of polydextrose in the large intestine and its beneficial effects. Benef Microbes 5:305–313. https://doi.org/10.3920/BM2013.0065

    Article  CAS  PubMed  Google Scholar 

  11. Glibowski P, Skrzypczak K (2017) Prebiotic and symbiotic foods. In: Grumezescu AM, Holban AM (eds) Microbial production of food ingredients and additives. Academic Press, Cambridge, pp 155–188. https://doi.org/10.1016/B978-0-12-811520-6.00006-4

    Chapter  Google Scholar 

  12. Thakker C, San KY, Bennett GN (2014) Soybean carbohydrates as a renewable feedstock for the fermentative production of succinic acid and ethanol. In: Brentin RP (ed) Soy-based chemicals and materials. American Chemical Society, Washington, pp 81–107. https://doi.org/10.1021/bk-2014-1178.ch004

    Chapter  Google Scholar 

  13. Švejstil R, Musilová Š, Rada V (2015) Raffinose-series oligosaccharides in soybean products. Sci Agric Bohem 46:73–77

    Google Scholar 

  14. Gonçalves DA, Teixeira JA, Nobre C (2022) In situ enzymatic synthesis of prebiotics to improve food functionality. In: Kuddus M, Aguilar CN (eds) Value-addition in food products and processing through enzyme technology. Academic Press, Cambridge, pp 253–267. https://doi.org/10.1016/B978-0-323-89929-1.00026-3

    Chapter  Google Scholar 

  15. Molina MS, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65:315–328. https://doi.org/10.1007/BF03180584

    Article  Google Scholar 

  16. Mei Z, Yuan J, Li D (2022) Biological activity of galacto-oligosaccharides: a review. Front Microbiol 13:993052. https://doi.org/10.3389/fmicb.2022.993052

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zeng M, van Pijkeren JP, Pan X (2023) Gluco-oligosaccharides as potential prebiotics: synthesis, purification, structural characterization, and evaluation of prebiotic effect. Compr Rev Food Sci Food Saf 22:2611–2651. https://doi.org/10.1111/1541-4337.13156

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Xie Y, Ajuwon KM, Zhong R, Li T, Chen L, Zhang H, Beckers Y, Everaert N (2021) Xylo-oligosaccharides, preparation and application to human and animal health: a review. Front Nutr 8:731930. https://doi.org/10.3389/fnut.2021.731930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Althubiani AS, Al-Ghamdi SB, Qais FA, Khan MS, Ahmad I, Malak HA (2019) Plant-derived prebiotics and its health benefits. In: Khan MSA, Ahmad I, Chattopadhyay D (eds) New look to phytomedicine advancements in herbal products as novel drug leads. Academic Press, Cambridge, pp 63–68. https://doi.org/10.1016/B978-0-12-814619-4.00004-5

    Chapter  Google Scholar 

  20. Xia W, Sheng L, Mu W, Shi Y, Wu J (2022) Enzymatic preparation of gentiooligosaccharides by a thermophilic and thermostable β-glucosidase at a high substrate concentration. Foods 11:357. https://doi.org/10.3390/foods11030357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carlson JL, Erickson JM, Lloyd BB, Slavin JL (2018) Health effects and sources of prebiotic dietary fiber. Curr Dev Nutr 2:1–8. https://doi.org/10.1093/cdn/nzy005

    Article  CAS  Google Scholar 

  22. Barclaya T, Ginic-Markovica M, Cooperb P, Petrovsk N (2016) Inulin—a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excipients Food Chem 1:27–50

    Google Scholar 

  23. Mudgil D (2017) The interaction between insoluble and soluble fiber. In: Samaan RA (ed) Dietary fiber for the prevention of cardiovascular disease. Academic Press, Cambridge, pp 35–59. https://doi.org/10.1016/B978-0-12-805130-6.00003-3

    Chapter  Google Scholar 

  24. Shyam S, Ramadas A, Chang SK (2018) Isomaltulose: recent evidence for health benefits. J Funct Foods 48:173–178. https://doi.org/10.1016/j.jff.2018.07.002

    Article  CAS  Google Scholar 

  25. de Souza WF, Almeida FL, de Castro RJ, Sato HH (2022) Isomaltulose: from origin to application and its beneficial properties-a bibliometric approach. Food Res Int 155:111061. https://doi.org/10.1016/j.foodres.2022.111061

    Article  CAS  PubMed  Google Scholar 

  26. Shendurse AM, Khedkar (2016) Lactose. In: Caballero B, Finglas P, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Cambridge, pp 509–516

    Chapter  Google Scholar 

  27. Karakan T, Tuohy KM, Solingen GJ (2021) Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption. Front Nutr 8:672925. https://doi.org/10.3389/fnut.2021.672925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozer B (2014) Natural anti-microbial systems: lactoperoxidase and lactoferrin. In: Batt CA, Lou TM (eds) Encyclopedia of food microbiology. Academic Press, Cambridge, pp 930–935

    Chapter  Google Scholar 

  29. Artym J, Zimecki M (2021) Antimicrobial and prebiotic activity of lactoferrin in the female reproductive tract: a Comprehensive Review. Biomedicines 9:1940. https://doi.org/10.3390/biomedicines9121940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dupont TL (2019) Donor milk compared with mother’s own milk. In: Ohls R, Maheshwari A (eds) Hematology, immunology and infectious disease: neonatology questions and controversies. Elsevier Health Sciences, Amsterdam, pp 43–52

    Google Scholar 

  31. Grembecka M (2015) Sugar alcohols—their role in the modern world of sweeteners: a review. Eur Food Res Technol 241:1–4. https://doi.org/10.1007/s00217-015-2437-7

    Article  CAS  Google Scholar 

  32. Petković M (2019) Alternatives for sugar replacement in food technology: formulating and processing key aspects. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.82251

    Book  Google Scholar 

  33. Niv E, Halak A, Tiommny E, Yanai H, Strul H, Naftali T, Vaisman N (2016) Randomized clinical study: partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome. Nutr Metab 13:10. https://doi.org/10.1186/s12986-016-0070-5

    Article  CAS  Google Scholar 

  34. Kapoor MP, Koido M, Kawaguchi M, Timm D, Ozeki M, Yamada M, Mitsuya T, Okubo T (2020) Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals–a randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. J Funct Foods 72:104067. https://doi.org/10.1016/j.jff.2020.104067

    Article  CAS  Google Scholar 

  35. Blanco-Pérez F, Steigerwald H, Schülke S, Vieths S, Toda M, Scheurer S (2021) The dietary fiber pectin: health benefits and potential for the treatment of allergies by modulation of gut microbiota. Curr Allergy Asthma Rep 21:43. https://doi.org/10.1007/s11882-021-01020-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ropartz D, Ralet MC (2020) Pectin structure. In: Kontogiorgos V (ed) Pectin: technological and physiological properties. Springer, Berlin, pp 17–36. https://doi.org/10.1007/978-3-030-53421-9_2

    Chapter  Google Scholar 

  37. Egharevba HO (2020) Chemical properties of starch and its application in the food industry. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.87777

    Book  Google Scholar 

  38. Zhen Y, Zhang T, Jiang B, Chen J (2021) Purification and characterization of resistant dextrin. Foods 10:185. https://doi.org/10.3390/foods10010185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hobden MR, Commane DM, Guérin-Deremaux L et al (2021) Impact of dietary supplementation with resistant dextrin (NUTRIOSE®) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr 60:4635–4643. https://doi.org/10.1007/s00394-021-02618-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu Q, Lu Y, Hu F, He S, Xu X, Niu Y, Zhang H, Li X, Su Q (2020) Resistant dextrin reduces obesity and attenuates adipose tissue inflammation in high-fat diet-fed mice. Int J Med Sci 17:2611–2621. https://doi.org/10.7150/ijms.45723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumari A, Arora S, Singh AK, Choudhary S (2016) Development of an analytical method for estimation of neotame in cake and ice cream. LWT 70:142–147. https://doi.org/10.1016/j.lwt.2016.02.045

    Article  CAS  Google Scholar 

  42. Balthazar CF, Silva HA, Vieira AH et al (2017) Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Res Int 91:38–46. https://doi.org/10.1016/j.foodres.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  43. de Paulo FD, de Araújo FF, Neri-Numa IA, Pastore GM (2019) Prebiotics: trends in food, health and technological applications. Trends Food Sci Technol 93:23–35. https://doi.org/10.1016/j.tifs.2019.09.004

    Article  CAS  Google Scholar 

  44. Bharathi S (2019) Functional effects of soy-raffinose on the quality parameters of yogurt. Doctoral dissertation, University of Central Oklahoma Edmond, Oklahoma. https://hdl.handle.net/11244/326826

  45. Elango D, Rajendran K, Van der Laan L et al (2022) Raffinose family oligosaccharides: Friend or foe for human and plant health? Front Plant Sci 13:829118. https://doi.org/10.3389/fpls.2022.829118

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Li C, Shan Z, Yin S, Wang Y et al (2022) In vitro fermentability of soybean oligosaccharides from wastewater of tofu production. Polymers 14:1704. https://doi.org/10.3390/polym14091704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singla V, Chakkaravarthi S (2017) Applications of prebiotics in food industry: a review. Food Sci Technol Int 23:649–667. https://doi.org/10.1177/1082013217721769

    Article  CAS  PubMed  Google Scholar 

  48. Sorndech W, Nakorn KN, Tongta S, Blennow A (2018) Isomalto-oligosaccharides: recent insights in production technology and their use for food and medical applications. LWT 95:135–142. https://doi.org/10.1016/j.lwt.2018.04.098

    Article  CAS  Google Scholar 

  49. Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W (2023) Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. Food Sci Hum Wellness 12:2135–2150. https://doi.org/10.1016/j.fshw.2023.03.027

    Article  CAS  Google Scholar 

  50. Speranza B, Campaniello D, Monacis N, Bevilacqua A, Sinigaglia M, Corbo MR (2018) Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microb 72:16–22. https://doi.org/10.1016/j.fm.2017.11.001

    Article  CAS  Google Scholar 

  51. Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, Shuai O, Zhou G, Xie Y, Wu Q (2017) Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 9:403. https://doi.org/10.3389/fnagi.2017.00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin SH, Chou LM, Chien YW, Chang JS, Lin CI (2016) Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterol Res Pract. https://doi.org/10.1155/2016/5789232

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gupta PK, Agrawal P, Hegde P, Shankarnarayan N, Vidyashree S, Singh SA, Ahuja S (2016) Xylooligosaccharide—a valuable material from waste to taste: a review. J Environ Res Dev 10:555–563

    CAS  Google Scholar 

  54. Meyer D, Bayarri S, Tárrega A, Costell E (2011) Inulin as texture modifier in dairy products. Food Hydrocoll 25:1881–1890. https://doi.org/10.1016/j.foodhyd.2011.04.012

    Article  CAS  Google Scholar 

  55. Żbikowska A, Szymańska I, Kowalska M (2020) Impact of inulin addition on properties of natural yogurt. Appl Sci 10:4317. https://doi.org/10.3390/app10124317

    Article  CAS  Google Scholar 

  56. Li J, Cao L, Ji J, Shen M, Gao J (2024) Modulation of Human Gut Microbiota In Vitro by Inulin‑Type Fructan from Codonopsis pilosula Roots. Ind J Microbiol. https://doi.org/10.1007/s12088-023-01185-3

    Article  Google Scholar 

  57. Kothari D, Goyal A (2015) Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties. Food Funct 6:604–611. https://doi.org/10.1039/C4FO00802B

    Article  CAS  PubMed  Google Scholar 

  58. Nooshkam M, Babazadeh A, Jooyandeh H (2018) Lactulose: properties, techno-functional food applications, and food grade delivery system. Trends Food Sci 80:23–34. https://doi.org/10.1016/j.tifs.2018.07.028

    Article  CAS  Google Scholar 

  59. Janczuk A, Brodziak A, Czernecki T, Król J (2022) Lactoferrin—the health-promoting properties and contemporary application with genetic aspects. Foods 12:70. https://doi.org/10.3390/foods12010070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mudgil D (2018) Partially hydrolyzed guar gum: preparation and properties. In: Gutiérrez T (ed) Polymers for food applications. Springer, Cham, pp 529–549. https://doi.org/10.1007/978-3-319-94625-2_20

    Chapter  Google Scholar 

  61. Vanitha T, Khan M (2019) Role of pectin in food processing and food packaging. In: Masuelli M (ed) Pectins-extraction, purification, characterization and applications. IntechOpen, London, pp 85–105. https://doi.org/10.5772/intechopen.83677

    Chapter  Google Scholar 

  62. Chen W, Zhang T, Ma Q, Zhu Y, Shen R (2022) Structure characterization and potential probiotic effects of sorghum and oat resistant dextrins. Foods 11:1877. https://doi.org/10.3390/foods11131877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pujari R, Banerjee G (2021) Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 99:255–273. https://doi.org/10.1111/imcb.12409

    Article  CAS  PubMed  Google Scholar 

  64. You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C (2022) The promotion mechanism of prebiotics for probiotics: a review. Front Nutr 9:1000517. https://doi.org/10.3389/fnut.2022.1000517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Kumari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., K. G., R., Sudhakaran. V., A. et al. Unveiling the Health Benefits of Prebiotics: A Comprehensive Review. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01235-4

Keywords

Navigation